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Abstract

This work examincs the angular correlatioun of speckle patterns produced by the
coherent illumination of ranrdom rough surfaces. Speckle patterns are produced
when coherent light is scattered by a rough surface or other random medium. As
the angle of illumination changes, the speckle pattern changes at a rate determined
by geometry and by the details of the scattering process. It is this angular change
that is studied in this thesis by means of the correlation coeflicient.

Experimental studies are made of the angular change of speckle patterus from low
and high sloped Gaussian random rough surfaces. They are illuminated with a
linearly polarised laser bcam, and the correlation coefficient of speckle patterns
observed with a CCD camera then being determined by computationai analysis.

The Kirchhofl approximation is applied to the Helmholtz-Kirchhofl integral to obtain
a two-dimensional analytical solutioa for the corrclation produced by a low slope,
single scattering. Gaussian surface. The results are compared with the experimental
measurcments.

A simple statistical examination of Gaussian random rough surfaces is made;: this
shows that the Nirchhofl approximation is still valid even for surfaces which exhibit
multiple scattering. The Kirchhoff approximation is used to derive an expression for
the scattered light from a high sloped, multiply scattering. surface. This required
computational implementation — an advantage being that surface shading can be
accounted for. A very fast computational method for determining shaded areas on
a surface is presented. Polarisation changes in the scattered light are catered for.

A conceptual model of the processes involved in multiple scattering is developed,
successfully explaining various features of observed results,
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Chapter 1

Introduction

1.1 Introduction and Literature Review

Interest in light scattering from random media has undergone a noticeable revival
within the last decade. Although some of this renewed interest may be attributable
to the more recent computer technology, enabling solutions to various scattering
problems to be determined numerically, the subject has generated interest in the
medical field. In this arca the voluiue scattering and absorption properties of a pa-
tient may potentially give information about internal processes without the necessity

of large and expensive equipment or the use of harmful radiation.

The driving forces behind the study of scattering from random rough surfaces are its
potential as a non-destructive or remote probe for measuring the stavistical proper-
ties of reugh surfaces. and the inescapable effect that the inherent randomness in all
surfaces has on everyday scattering applications. Radar falls into this last category,
and may be regarded as a scaled up light scattering problem; similar results may be
obtained using light in a lalboratory as would be gathered from a more expensive,

D] T



28 CHAPTER 1. INTRGDUCTION

less controllable, radar set up.

1.1.1 Theoretical Models

This section will present some of the theoretical models which exist for determining
the problem of light scattering from random rough surfaces. It aims to give an

introduction to some of the methods not used within this work.

Approximate theories exist for very small height deviations across the surface (such
as perturbation theory) and for surfaces which have sufficiently low gradients such
that they may be considered as single scattering (Beckmann theory or single scat-
ter/first order Kirchhofl approximation). Other methods atiempt io predict ihe
effects of multiple scattering and iuclude the effects of surface shadowing. Compu-
tational methods of solving vhe integral equations also exist which avotd the necessity
of approximatious. Most of the theories discussed below may be found in more depth

in the book by Ogilvyll.

Perturbation Theory

Perturbation theory can be used for slightly rough surfaces which deviate from a

flat plane by only a small amouut.

The field on a surface = = h{x,y) may be written as
E=5I+FE, (1.1)

where the subscripts @ and s represent the incident aud scattered fields respectively.

IS 15 a vector quantity of a particular polarisation.

e 2 © 00006092 @ 06009 000C OO0 O50©06000606 9609069
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1.1. INTRODUCTION AND LITERATURE REVIEW 29

The perturbation theory assumes that the scattered field may be written as a series:
E3=E30+E61+E52+"' (12)
where the numerals represent the different orders.

Assuming E; and E, to be functions of h, taking a Taylor expansion in terms of A,
terms of the same order in h may be equated after applying the Dirichlet boundary

condition, namely that the field at the surface is zero
Elich =0 (1.3)

at the mecan plane (z = 0). Applying the Dirichlet boundary condition when the
surface heights are much smaller than a wavelength, the zeroth order term in the

perturbation series (the field scattered from a flat plane) is found:
EsO'z:O = "'Eilzz() (14)

and the first order perturbation term (representing the effects of the deviations in

the surface from a smooth plane) is

/OEx aEqD
Ealizo = ~h | = |:z0 + ——|:= 5
1]:=0 z\(.): s=0+ =5 |z=0 (1.5)
The Helmhboltz-Kirchhofl integral (discussed in chapter two):
oE
I 'dS 6
= 5 dn v (1.6)

may now be used. with eqaation {1.5) as a boundary condition, to give the scattered

field:

74 5,, B -
Ea -—-/h (OF + o ") A (1.7)
)

0z dz ) 0z
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where S is the mean surface plane and ¥ is the half space Green’s function; all other

notation is as previously defined.

A similar method may be used to obtain the result for the Neumann boundary

condition,

OF
—a_l'l'lz=0 =0 (18)

This may be used when the surface gradients are much less than one, and gives

oh (AE;, 0JEy oh (OF; JEy J*E;  §FEq :
= [ | === — | == —h| ==+ —— )| ¥dS
Ean ,/; [0.1: ( ox + ox ) + dy ((’)y t Jy ) h ( 0:? + 02 )] e

{1.9)

1t is possible, again with a similar method, to obiain the second order perturbation
of thz scattered field. The original Taylor expansion must be taken out to second
order (terms in i%) to obtain the new boundary condition to apply to the Helmbholtz-

Kivchhofl integral,

The accuracy of perturbation theory has been studicd by many authors (cf. section
3.1.3 of reference [1] for a detailed review), the generally accepted range of validity
being ko < 1 where o is the rms height of the surface, 7 the correlation length and
k the wavenumber 2. One recent work compares perturbative calculations with
“exact numerical results” (as used in references [2], [3] and [1]) and those obtained
by using the Kirchhofl approximationt™, It finds that for k7 > 1 (where 7 is the
correlation length of the surface), the fourth order perturbative expansion is better
thau the second order one. the latter being accurate when the total incolierently
scattered energy is less than about 9% of the incident energy. For the fourth order

expansion, the theory was found to he accurate when the totai incoherently scattered

energy is less than around 399 of the ncident energy. I b7 < 1, it was found that

R . N SRl . S RO R S e . . .. . . ., o P S . . a L : R
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1.1. INTRODUCTION AND LITERATURE REVIEW 31

the perturbative series is nct convergent, and the second order expansion gives better

results than the fourth.

Surfaces considered in this thesis have an rms roughness, ko > 1, hence the pertur-

bation approximation will be of little value.

Extinction Theorem

The extinction theorem derives its name from the use of the condition that the field
within a scattering surface must cancel the incident field. For finite surfaces, this
condition is approximated to include all space below the surface plane. . is also

known as the null-field method and the extended boundary condition method.

Starting with the usuai Helmholtz-Kirchhoff integral (equation (1.6)) for the scat-
tered field, and writing the incident field such that the field below the surface is zero

—- 1.c. Jie incident field cancels out the scattered field (E; + E, = 0), then

Ei = /QEMQ (1.10)

Equation (1.10) may be solved for £, which may then be substituted into equation
(1.6) to give the scattered field. In practice it is usually necessary to find an ap-
proximate solution to equation (1.10G;, by using an expaunsion similar to that used
in perturbation techniques. Numerical simulation avoids this necessity by using an

iterative technique to obtain an exact resultBIEIH,

Whiist thie extinction theorem provides an exact solution in principle, the scattered

intensity cannot be written as a single closed form expansion, and therefore it is of

little value in providing support for a pliysical picture of light scattering.
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Kircnhoff Theory

Kirchhoff theory is used extensively in later chapters of this thesis and will not be
dealt with in this section. The single scattering Beckmann theory is discussed in
chapter four, and the double scattering technique used by Brucel®® and otherst® 10101

is explained in chapter five.

One technique increasingly used starts with the extinction theorem and, by iterating
the surface field derived n times, gives increasing terms in a series of which then = 0
term is the single scatter Kirchhofl solution, larger n giving terms representing
double and higher order scattering termst'@03, Computational techniques must be

used to solve a large matrix equation.

1.1.2 Mean Scattered Intensity

Rescarch into light scattering from random rough surfaces has remained fairly active
since the 1eporting by Mendez and O’ DonnellM1%) of ‘enhanced backscatter’, This
work was stimulated by the observation of a similar effect in volume scattering!!,
The cftect itself has bheen known of for years in the astronomical field, referred to as
the *opposition effect’ [Mentgomery(l? and refs. therein]. The name came from the
fact that it was noticed in scattering from visible bodies in the solar system when
they and the sun were 1u opposition, i.e., on opposite sides of the earth. The signif-
icance of Mendez and O'Donnell’s work was that well characterised random rough
surfaces were used, following the method of Grayl'® (see chapter three), enabling

confident comparisons with computational results and the existing approximate an-

alytical theories.
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It was found that Beckmann theory!"¥ agreed well with experimental results from a
low slope surface for small angles of incidence. A study of two steeper slopz surfaces
was undertaken, showing the enhanced backscatter phenornienon, and a possible
explanation for the backscattering process was outlined — the enhancement being

due to constructive interference of equal and opposite multiply scattering paths.

Experiments have been conducted comparing low sloped surfaces to theory?® and
various others examine the scattering characteristics of known steep slope surfaces
which display the enhanced backscattering phenomenon. Included in these is a com-
parison of dielectric and perfectly conducting (gold) surfaces with identical profiles?!
— epoxy resin copies of the originally fabricated gold coated surface were made via
a silicone gel mould. A gold coated reproduction was compared experimentally with
the master and the results confirm that the technique faithfully copies the original.
Significant enhanced backscattering (noticed in the gold surface) was not observed
experimentally in the dielectric case. Results of a numerical calculation were com-

pared with the experimental dielectric scattering results showing broad agreement.

Results from various one- and two-dimensional surfaces have also heen presented for
different wavelengths of illumination?¥ and a comparison of results from statistically
similar one- and two-dimensional surfaces has been madet¥ showing results which

are similar in as far as they may be compared.

In reference [23] the Stokes’ parameters of the average scattered light are utilised
to present experimental data of the polarised and unpolarised componeats. The

backscatter peak was found only in the unpolarised component, and is therefore

believed to be a product of multiple scattering. Numerical caleulation results were
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compared {avourably with experimental results from one-dimensional surfaces.

More extensive studies have since been made of the polarisations of scattered fields
and the Stokes’ parameters. Four unique elements were found in the Mueller matrix
of a one-dimensicnal surface, all of which were shown to be significant in scattering
from such a surface which produces enhanced backscattering 24, The complete
Mueller mairix for a one dimensional perfectly conducting random rough surface
has been numerically and experimentally foundl3 for all observed angles and for a
number of different angles of incidence —- the results were generally similar to each

other.

A complete Mueller matrix has been numerically and experimentally calculated for
a gold and dielectric one dimensional surfacel?. Agreement between numerical and
experimental results was good for the dielectric case, but differed slightly in the case
of the gold surface. The difference was shown to be in the mzy matrix term (mapping
linearly polarised incident light to circularly polarised scattered light), and believed
to be due to a difference in the reflection coeflicients of the surface and those used
in the calculation. The Stokes’ parameters are examined and utilised as in reference

[23] to show the polarised and unpolarised scattering components.

A presentation was given of numerical calculation results of the angular contribution
in the intensity of the diffuse component of p-polarised light scattered from a random
grating ruled on penetrable and imipenctrable diclectric medial¥l, It is found that
a metallic (silver) surface gives similar results to a perfectly conducting one. This

result has a large impact on the numerical study of light scattering as it is mnch

simipler to implement a perfectly conducting surface than a metallic one.

OOOOOOOQO.QQQ..QQ.OOOQ.Q..Q.CQ0.0
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Multiple scattering and shadowing extensions to the simple Kirchhoff theory have
been implemented[@[78 (see chapter five) — numerical resuits for single and double
scatter components of the Kichhoff theory are presented, for gold and dielectric
one dimensional surfaces, and compared favourably with experiment. Experimental
results have also been compared to the double scatter Kirchhefl theory for a gold
and a dielectric surface which have identical height profiles [2%. Various wavelengths
were used. Generally, the double scatter Kirchhoff theory was found to be in good

agreement with experimental results for angles of incidence of less than sixty degrees.

The ‘exact’ method of the iterative solution of the extinction thecrem® has bee

used in a Monte-Carlo numerical calculation!? in conjunction with the single scatter
Kirchhofl theory for a range of surface statistics, to define the limits of the single
scatter Kirchhofl approximation. The results presented do not define the limits of
where the Kirchhofl approximation can be applied, but where the single scattering

theory based upon the approximation can be expected to succeed.

Other work outside the scope of correlation measurements, but not so closely related
to the work to be presented in the following chapters, includes joint experimental
and theoretical studies of the backscattering from and transmission through dielec-
tric and thin film random rough surfaces4?7. Speckle techuiques have also been
developedP¥ — speckle contrast measurements?B% are amongst the many different

methods discussed.
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1.1.3 Correlation Studies

Correlation studies were first carried out in the early to mid-seventies. However,
at this time the interest in multiply scattering surfaces had not developed and all

works dealt with low slope surfaces.

Pedersen! discussed speckle correlation, giving a theoretical explanation of var-
ious results reported prior to his study. Most of his interest, however, lay with

polychromatic specklel®? and his work is not relevant to this thesis.

The work by Léger and Perrin to determine surface roughness via a correlation
technique is directly relevant to this work. By exposing a photographic plate to
speckle produced by a rough surface at two angies of incidence, Young's fringes
could be observed in the Foutier plane when the processed plate was placed mn a
converging beaml®J. The contrast of the fringes was mathematically related to the

surface roughness, starting with the general Beckmann solution for the scattered

field, but then working in the Fourier domain.

B4 & more general derivation of the frirge contrast from angular

In a later paper
correlations was reported. This was again based on the single scattering Beckmainn
theory, but took a real space approach to tlie problem. It is the basis of the derivation

to follow in chapter four.

More recently. OhlidalP™ compared the equivalent of Léger and Perrin’s method
(which uses the Fraunhofer approximation) to results obtained using the Fresnel
approximation. No comparison with experimental measurements was made. but an

analysis of when cach method should apply is presented.
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The most recent studies in this area have been performed by Michel et al. and
Knotts et al. Michel et al.’¥ present numerical results for the angular correlations
of scattered amplitudes from a one dimensional surface and aunalyse the results into
those attributable to single and double scattering. Xnotts ct al.B7 offer experimental
results for angular correlations obtained from a one-dimensional surface and compare
with numerical results. A discussion as to the cause of various features observable

in the results is given.

The Memory Effect

The memory effect was named by Feng et al.P®¥ for situations of volume scattering
(scattering from a media in which the light may travel, e.g., paint or milk). They
show various elements contributing to the correlation function, and show that certain
of these are large when the “momentum transfer of the incident beams equals the
transmitted ones™, r.e.. the change in the wave vectors upon scattering is the same
in both cases being correlated, Aqp = Aqe. Aq is defined as q, — qu., the diflerence

in the (transverse) wave vectors of the incident and scattered light,

Applying this to in plane surface scattering correlations, the memory effect condition

Lolds (see chapter four) when
sin 0; — sin 0, = sin ¢, — sin ¢, (1.11)

where the subscripts ¢ and s represent the incident and scattered angles vespectively,

0 being used to obtain one speckle pattern and ¢ being used to obtain the second.

This condition was used by Léger and Perrinl* twelve years ecarlier in their work
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described above, although it was expressed in a different form:
cos 0,60 = cos ¢;6¢ (1.12)

Equation (1.11) may be reconciled to equation (1.12) by noting that ¢, and ¢,
have been replaced by 0; + 60 and ¢; + é¢ respectively and by applying a simple
trigonometric transform. As they were only dealing with small changes in 60 and

b¢, terms of order 0% and 6¢? can be removed.

PederserBY also noted that it was desirable to have the condition satisfied, and

equation (1.11) has been used in the work reported by Miclhel et al.B39,

Nieto- Vesperinas and Sanchez-Gil* have studied the memory eifect in relation to
surface scattering. but they also notice an “enhanced long range correlation™ ob-
servable wlien

sind, + sinfly = £(sin@; + sin ;) (1.13)

The origin of this i. believed to be the same as for the peak observed in enlianced

backscattering.

1.2 Synopsis

The remaining sections of this chapter consist of a statement of the original work
undertaken and a description of the scattering geometry to be used throughout the

work.

The second cliapter contains general theoretical notions, including statistical con-

cepts such as random variables and processes. It also contains a derivation of

0.00QOQO..O0_0.00ll.OOQOQQ.O_Q_.QO._O_
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the Helmholtz-Kirchhoff integral and some other concepts from electromagnetism,

namely descriptions of reflection coeflicients and polarisation.

Chapter three contains all of the experimental methods used; these include manu-
facturing and classifying random rough surfaces and the procedure used to calculate

the correlation coeflicient from digitised images of speckle patterns.

An analytical expression for the correlations expected from a low-sloped, single
scattering surface is derived from the Helmholtz-Kirchhoff integral, in chapuer four,
by applyving the Kirchhiofl approximation to it. Experimental results for such a

surface are compared with the theoretical result and discussed.

The fifth chapter extends the Kirchhofl result to include the double scatter term.
The equation is no longer analytically soluble and is imiplemented computationally.
Polarisation c¢hinges are considered, and an algorithm for rapidly determiniug ‘lines
of sight” on a surface is presented. It was necessary to develop this algorithm in order
to calculate point-to-point shading in the fastest possible time; without it a two-
dimensional computational problem of this nature would not be practical. Results
for a high-slopea, multiple scattering surface are compared with the computational

results.,

The last chapter considers, and attempts to explain, the results obtained. A possi-

ble mechanisin te describe the observed single and double components of multiply

scattering surfaces is presented.
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1.3 Statement of Originality

There is not a great deal of original content within chapters one, two and three —
these are mainly concerned with introducing some background information and the

concepts and techniques available for use within this thesis.

Chapters four and five contain new experimental results for the intensity correlation
of speckle patterns produced by a method described in chapter three. In chapter
four an existing analyticai expression is extended to deal with two-dimensional in-
tensity correlations and then numerically averaged to enable a comparison with the
experimental results. In chapter five, a double scatter numerical simulation based
on the Kirchhofl approximation is extended to cope with two dimensional surfaces.
A new fast technique for calculating the shadows cast on the surfuce by its own

fluctuations is presented.

Chapter six promotes a simple conceptual model which can successfully explain the
existence o and to some extent predict the positions of, various features noted in

the double scatter correlation results and in double scatter average intensity resulis.

1.4 Correlation Geometry

Consider a plane mirror which can rotate about an axis which lies in the plane of
the mirror. If an obscrver looks in the direction of the mirror, he will see an image
of what 1s around the specular direction of observation. Now if the mirvor is retated
about the axis, and the observer moves around the same axis until he can see the

same scene as before, then the hie will have rotated twice as much as the mirror.

OOOOQ.OQOOOOQGOQ”Q.O0‘._000”00‘...0.'_.
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8= 0:1+30

Figure 1.1: The geometry to be used to obtain the experimental aud tleoretical
results. Observation is always around ihe specular direction.

Extending this arrangement to the correlation of speckle patterns formed by scatter-

ing from a random rough surface: if the scattering surface is cousidered as random

fiuctuations on top of a plane mirror, the phase variations intioduced to the scat-

)

tered light should be most identical at different incident angles if alwavs observing
5 A 5

m the specular divection and illiminating on the rotation axis (such that the same

random {luctuatic as are illuminated). If these conditions are met, only the change

in the phase variations due to the different angles at which light is incident on the

:

surface should be observed.
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The geometrical arrangement to be used for investigating the angular correlation of
speckle patierns will be conducted by always viewing speckle pat erns in the specular
direction to the incident illumination (see figure 1.1). The argun -nt presented above

will be examined mathematically, for the case of a Gaussian random rough surface,

later in chapter four.
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Chapter 2

Mathematical Concepts

2.1 Statistics

In this section, various statistical notions and formulae, which will be required later,
will be presented. Unless otherwise stated, all variables will be real and continuous.

The bulk of the material below can be found in texthooks (e.g., Papoulist'® or

Goodmanlt!).

2.1.1 Probability

Probability may be defined in three ways, but generally all of the definitions are
required to form a compicte picture, each definition considered in isolation lacking
something which would enable it to stand on its own. In fact, the most mathe-
matically rigorons definition of probability (the axiomatic approach) is incapable of
assigning a numerical probability to any event othier than the certain oue, so it, and
the reams of theory based upon it, would be useless in the real world without the

other, ‘dirtier’, relative frequency and classical (a priori) approaches.

13
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The definitions of probability are:

e the aziomatic definition, which assigns a number to an event, the number
restricied to be positive, the probability of the certain event being one, and
the probability of twe mutually exclusive events being defined as the sum of

the two individual probabilities;

o the relative frequency definition, which defines probability of an event as the
fraction of the number of times the event occurs over the number of exper-
iments performed as the number of experiments performed tends to infinity;

and

o the classical {a priori) dcfinition, which counts the possible outcomes and
defines the probability as the fraction of the number of outcomes in which the
cvent is expected to occur in a single experiment over the total number of

possible outcomnes.

The most useful single definition of probability is a modified form of the axiomatic
approach. The probability is a number associated with an outcome of a random
experiment (an experiment where thie outcome is not previously determined), this
number being a linear representation of the likelihood that the associated outcome
will be observed, or might be expected to be observed. The probability is 1 for an

outcome which will definitely happen, 0 for an outcome which could never happen.

This approach combines the individual definitions and incorporates everything nec-
essary 1o develop and use probability theory. It can be casily shown that since the

probability is liuear, the probability of occurrence of any one of some mutnally ex-
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clusive outcomes is the sum of their individual probabilities, thus fulfilling the last
axiomatic condition. Moreaver, the relative frequency and classical approaches have
both been incorporated, such that something which happei. or might be expected
to happen, half of the time will have a probability of 0.5; hence, it is possible to as-
sign a number to an outcome which was not previously possible under the axiomatic

definition.

This definition is preseuted as an aid to the understanding of probability theory.

2.1.2 Random Variables

Definiticn

The definition of a random varizble is based on the underlying random experiment
and the “events” or possible (numerical) outcomes of this experiment. A random
variable is all possible outcomes of a random experiment associated with their prob-
abilities. A discrete example may clarify this: if the experiment is throwing two six
sided dice and finding their sum, then the possible outcomes are integers between
2 and 12 cach having differing probabilities of occurring — the value 2 has a prob-
ability of occurrence of 1/36 (the dice showing 1 + 1), whereas the value 7 has a
probability of occurrence of 1/6 (the dice showing 1 + 6,2 4+ 5,3 + 4,4 + 3,5 + 2
or 6+ 1). The values of this discrete random variable will occur with the same

frequency as the ontcomes of the experiment,
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Probability Distribution and Density Functions

A probability distribution function, Fx(z), is a function associated with a random
variable, X, and which gives the probability that an outcome will happen by z;
1.e., the probability that an outcome will be smaller than z; is Fx(z1). Note that

Fx(—o0) =0 and Fx(o0) = 1.

A probability density function, Py (a), also associated with a random variable, X,
assigns a probability to every possible outcome z; i.c., the probability of the outcome
@y occurring is Py(a;). Strictly speaking, the probability density function gives the
probability Py (z;)dx that an outcome is between a, and @y +da. A discrete random
variable may be considered as having a probability density function consisting of a

series of delta functions.

The probability density function is derived from the probability distribution func-
tion, where possible, by
dFy(a
Py(a) = L2 (2.1)

dz

The inverse relation

F_\'(:z')z/r Px(n)dy

—
o
O]

also exists.

Expected Value

The expected value (or mean or statistical average) of the random variable X is

defined as the sum of all the possible outcomes multiplied by thieir individual prob-
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abilities:
o0

zPx(z)dx (2.3)

n=E{X}= /_
where Py is the probability density function. When « is a possible value of the
random variable X, then Px(z) is its probability. The mean is a first order moment

of a random variable, as will be seen below, but has been dealt with first as it is a

concept with which most people are familiar and serves to introduce the notation.

Moments of a Random Variable

The moments of a random variable are defined as

mi = B{X*} = [ #*Py(a)da (2.4)

-0
Here, n19 = 1 and m; is the mean, 7. Generally of more interest are the ceutral

moments, 1.c., the moments of a random variable after it has becn shifted to the

centre of its range so that the expected value is zero:

[
<t
-

e = E{(X =)f} = j (@ = ) Py (2)de (2.
-0y
Here, p10 = 1, pu = 0 and g, is the variance, o?, o being the standard deviation.

The more familiar form of the variance of a (discrete) list of N numbers

. 1 A
O’Z = (7\7 L ’1;2 - (—N Z .‘l.',') ) (2())
=<1 =1

can be obtained from a relationship between the moments and central moments

(found by a binomial expansion of the (z —7)* term in equation (2.5)),

Mo = My — 7}2 (27)
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and by realising that in this case of equally weighted values,

1 N
my = ]—v-‘z;xf (2.8)

Joint Moments of Two Random Variables

The joint moments of two randomn variables X and Y are given by

kyel Al A
my = E{X*Y'} = /J 2y Pxy(x,y)dady (2.9)
-0/ —o0
The expected value of a function of two random variables is given, more generally,
by

E{f(X.) }—/ _/ (@ p)Pry(e,y)dady (2.10)

The order of the roments is defined as & + [ (cf. equation (2.9)), so, for example,
the first order joint moments of two random variables X and Y, are m;q = 7, and

moy = 1)y

Pxy(a,y) is the joint probability density function of X and Y. Generally, this must
be determined by finding the joint distribution function Fyxy (x,y) (the probability
that X is smaller than = aud Y is smaller than y) and differentiating with respect

to both = and y. Special cases of interest are:

1. Two independent random variables
1

Pxy (v y) = Px(x) Py (y) {2.11)

and
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2. Two Gaussianly distributed random variables, X and Y, with means of 7, and

7y, variances of o} and o? and a correlation coefficient, Cxy:

1

Pxy(z,y) =
2rooy\/1 — Cky

exp (_ 1 ) [(-T —n:)* _ 2xv(x=m)ly=m) (v~ 7;,,)2])

2
2(1 = Cky ol G0y ol

X (2.12)

It can be seen from the above that two uncorrelated Gaussian variables are also

independent, i.e., if Cxy = 0 then equation (2.12) takes on the form of equation

(2.11).

The joint central moments of two random variables are defined by

g = E{X = )M (Y = )} = / / | (2 = 92)¥(y = 1) Pyy (x,y)daedy  (2.13)

The second order central moments are of interest here. These are ji = 02, g2 = 03

and 11, which is the covariance of X and Y, given by

iy = E{(X = 5)(Y —0,)} = E{XY} — E{X}E{Y) (2.14)

Finally, the correlation coefficient of X and Y is defined as

(w . _____E{(.\' — 1]1.)()’ —_ 7]y)} i _ j

M7 E(X S a B — g1 Vimbe 0.0,

—
o
—

ot

The correlation coeflicient gives a measure of the similarity of the two random vari-
ables. It will have a value of 1 when the random variables are identical (when
X = Y); a value of 0 when there are no similarities between one random variable

and the other; and a value of —1 if one random variable is the opposite of the other

(when X = =Y).
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Central Limit Theorem

Another principle to be applied later is the central limit thecrem; this states that the
joint probability density function of a sum of independent random variables tends

towards a Gaussian distribution as the number of random variables tends to infinity.

Following Goodmant*ll: if U; = Uy,U;-+-Uyn are N independent random variables

with means of 7; and standard deviations of oy, then the random variable Z, defined

as

1 N U,' — T
Z = 2.16
VNS o (2:10)

will have a probability density function of the form
p) 1 -22/2 -
Py(z) = —=e (2.17)

V2T

as N tends to infinity. Note that this does not depend on the individual probability

density functions of U,.

The central limit theorem is still applicable with varyving degrees of validity for finite
N.

2.1.3 Random Processes

Definition

The definition of a random process is similar to that of a random variable, the differ-
ence being that where a random vaviable represents valucs with certain probabilities,
a random process represents functions with certain probabilities. The definition is

again based on aun underlying random experiment and the possible outcomes of this
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experiment, but here the outcomes are functions. A random process is all possi-
] functi f arand iment iated with their probabilities of
le output functions of a random experiment associated with their probabilities o

occurring.

The functions need not be previously defined; an observation of a random process
(e.g., noise in a system with respect to time), will in general yicld one sample
function, z(t). That sample function is now known, but it may not be possible
to find it again — another experimental observation will generally give a different

sample function.

It should be noted that a random process X(t), as well as being a function a(t)

associated with each cvent, 1s also a random variable X for each possible (fixed) t.

The probability density function of a random process is now also a function of the
same parameters as the random process; for example, if the random process is X (p, q)
then the (first order) probability density function is Py{a:p.¢). The moments and
central moments can be calculated using this quantity, and will also be functions of

p and q.

Stationarity and Ergodicity

A random process is said to be stationary 1a the strict sense if its statistics are
independent of origin; i.e., if X(¢) and X (¢ + s) have the same statistics for any s.
This implies that first order statistics are constant, and second order statistics only
depend on the difference, s. Reference to stationary quantitics later in this work

will mean strictly stationary ones.
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A randem process is ergodic if an average over one sample function (a temporal or
spatial average in physical systems) is identical to the expected value of the process
for fixed parameters (its ensemble average). This means that the statistics of a
random process X(?) can be determined by either one function x(t) or by one cf the

random variables X at fixed t. Any ergodic process is also stationary.

Moments of a Random Process

The mean of a random process X(1) for fixed t is the expected value of one instance

of that random process,

y(1) = E{X(1)} (2.18)
Notice that it is a function of 1.
Other quantities of interest are the second order moment EF{X(¢)?}, and the second
order central monient or variance

o) = E{(N(1) =)} (2.19)

The joint moments of two instances of a randem process X (f;) and X(f;), are from
equation (2.9),

niltntz) = E{X(6)X(1)') (2.20)

miy(t;,12) 18 the autocorrelation function, Ry x (#1.12), of X(!).

Tle joint central moments of *wo instances of a random process X(f;) and X({3).

are from cquation (2.13),

il 1) = EYCX(6) = gt )N (12) = n(t)'} (2.21)
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i, t2) is the autocovariance of X(t),

Equation (2.21) leads, following equation (2.15), to the correlation coeflicient be-

tween two instances of a random process X(1;) and X(t,):

E{(X(t1) = n(t))(X(t2) —9(t2))} _ _ pulty,t2)

Cxx(t1,13) = ‘ = - (
xl VELX (1) — nt)PYELX () ()7} o(t)alt)

S\D
L)
o
N

2.1.4 Differentiation of a Random Process

Papoulisl*, derives a few hmportant relations for differentiating random processes.
First the expected vaiue of the derivative X'(t) of a random process X (1) is equal

to the derivative of the expected value of that process:

PN d ...
E{X' 1)} = Z £{X Q) (2.23)
The autocorrelation. iy y = my;. of the derivative of the process is
3)213\'\'
R oyt ’f. = — 2.24
A'X ( 1 2) ()’10[2 ( )
If X'(#) is stationary, then
d*Rxx(1) N
Ryoxe(t) = = (,‘12‘1— =~ R (1) (2.25)

Finally, note that when ¢ = 0, the two random variables are the same and Ryy is

the second moment of X i.e.,

N () Hezo = Ryix(0) = =R (0) (2.26)
2.2 Gaussian Random Rough Surfaces

Gaussian surfaces will he considered here since an assumption of Gaussian statis-

tics (as will he seen later) cases analytical calculations, and the surfaces can be
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manufactured physically and also created computationally. Here, a mathematical

description of a Gaussian surface is given and some of its properties analysed.
! & p

The Gaussian random rough surface shall be represented by a stationary random
process S(z,y) with a zero mean, E{S(z,y)} = 0. The probability density function
of the process (i.e., the height Jistribution of the surface) is Gaussian in form with

standard deviation oy:
T 202

1 .
V= (

Also, a Gaussian correlation function shall be imposed on the surface:

Ps(s

|0
-~
-3
o

‘7
Cssil) = ™77 {2.28)

i.e., the surface has a correlation length 7.

Since the process has a zero mean its autocorrelation is, fromn equation (2.22),

Later, the curvature distribution of the surface will be required. This 1s not difficult
to obtain, the distribution of the derivative of a Gaussian process being Gaussian
itself (this follows frum the fact that any linear combination of Gaussian 1andom
variables - such as differentiation — s itsell Gaussian). All that is required is to
find the standard deviation of tlns new Gaussian distribution and the correlation

frnction of the derivative.

Equation (2.25) gives the correlation function of tae derivative distribution (from
equation (2.29)) and. again since the mean is zero, equation (2.26), gives the variance

of the derivative of the surface.

\
. e
P
0 i
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The autocorrelation, therefore, of the first derivative of the surface height (the gra-

dient), is

12\ 20% _2
Resi(l) = (1 - %-2-) 295 -5 (2.30)

2
The surface gradient has a Gaussian probability density function (cf. equation (2.27)
with zero mean (by equation 2.23)) and standard deviation

2
o5 = /Rora(0) = Y228 (2.31)

T

Applying this again, the autocorrelation of the second derivative of the surface height

(the curvature), is

412 4t 1202 _22
RL\‘HSH([,) = - (] —_—— + \ ase 3 (.

72 3r) T4

o
-
[
~—

So, the curvature of a Gaussian random rough surface has & zero mean Gaussian
distribution with a standard deviation of

2\/—3-0’;9

0’_\3" = 18511511(0) = T2

2.3 Convolution

Of interest later will be the convolution of two functions g(x) and f(a), generally
expressed as hi(a) = f(r) @ g(r) and written

a0

hiz) = / Tyl — u)du = ‘/:x‘ fle —w)g(u)du (2.34)

S -

The convolution determines the arca of the product of the overlapping region of the

two functions for the various displacements x of one with respect to the other.
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2.3.1 Convolution Theorem

The convolution theorem states that if F(u) and G(u) are the Fourier transforms of
two functions f(2) and g(x), then the product of these two transforms is the Fourier

transform of the convolution:

hiz) = f(z)@g(x) (2.35)
Hw) = F(u)G(u) (2.36)

The proof of this follows simply by taking a Fourier transform of bhoth sides of

equation (2.34).

2.3.2 Extension of the Convolution Theorem to Corre¢la-
tion Coeflicients

With reference to equation (2.22), if X (1) has a zero mean (5(t) = 0 for all ¢), then

the correlation coeflicient may be written:

E{X(1,). X(t2))
VE{X (1 1{ (X13)?)

(‘\\‘tl 1 )

l'da

——
o
-1

~——

Now, if X{f) is stationary, i.c., {; = { and {3 = 1 4+ &, and morcover ergodic — such
that the expected value may be rewritten as a time average over a sample function,

the two being identical — then:

1 T
' o= [l a(fa(t + s)(/{) e
Cyx(s) =] 21 - 2.38
= -w( 2 Drle()dt =

The 1/27 term divides through. and the limit may be realised,

[ alt)e(t + 5)dt

Cyx(s) = = el

QQCOOQOOOOQOC.O.QC..OQOOQ.!OOQOOO
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Finally, if 2(¢) is normalised such that the integral

/  [e(e)a (2.39)

-
(sometimes referred to as the total energy of z(t)) is equal to 1, then the correlation

coeflicient hecomes

Cxx(e) =/°° 2(1)a(t + s)dt (2.40)

-0

Notice that this is very similar to the convolution, equation (2.34). If, as with equa-
tion (2.34), Fourier transform. are taken of both sides of the equation, a relation
sirniiar to the convolution theorem should be expected. In fact, for two member func-
tions f(a) and g(2) of a zero mnean ergodic randomn process (normalised as required
above), with Fourier transforms F'(u) and G(u), the transform of the correlation
cocflicient C(u) is

C(u) = F(w)Glu) (2.41)

Where 77 (u) is the complex conjugate of F'(u).

Equation 2.41 will be used to calcuiate the correlation cocificient hetween two ex-

perimental speckle pattern images (see chapter three).

2.4 Electromagnetism

2.4.1 The Helmholtz-Kirchhoff Integral

The derivation helow follows that by Born and Wolff? and Beckmann!™. The
time dependence of various quantities has been suppressed as this work deals only
with monochrenmatic light and does not consider speckle patterns which change with

respect to tine,
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The starting point will be Green’s second theorem,

2 — 2 ;= ._’ll_ QE
///VEV ¥ — YVEdV _/ E = (2.42)
where the operator
P
— = 2.4
dn n.v (2.43)

and E and ¥ are sclutions I/ to the wave equation
(V24+EHU =0 (2.41)

which exist in the volume V surrounded by the surface S which has an inward

pointing normal n. These solutions mean that the volume integral in equation

(2.42) will be zero, so
JF
—hp—dS = 2.15
// Fan z!c')ld 0 (2:15)

One of the solutions to equation (2.44), K, is a component of tle electric ficld, and
the other, ¥, satisfics some conditions for the geometrical propagation — in the case
to be considered this is the spherical, or free space, Green's function:
Cik.r
p =l (2.16)
”

The standard technique for integrating over a function with a singularity is used,
namely that of surronuding the singularity by a small sphere with a radius tending
to zero, the swrface of this sphere connecting with that of the main bulk by an
mfinitesimally thin ‘corridor’. This means that the singularity (here for r = 0),
is excluded from the volume contained within the surface. Figure 2.1 siiows this
process, mtegration of equation (2.43) should now be performed over & and S (and

. along the corridor joining them, hoth on the way to Sy and from it, hut the integrals

3 0 n ; . n -. N S CENEN B St . . - )
e . e - - L I . . A ) KRS . . R TR . A R N A . v . S e
Ve - .. LT <o .- T P .. B d o b BT o N . LT B . . . - . .
S0 LY o L el X e Lo, L. . . AR oL T E . . P
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Figure 2.1: Integration over a surface for a function with a singularity at point P.

along this corridor cancel cach other and so can be omitted). The integration now

Lbecomes
NP Jor Y oF
S = 247
/./ Fdn 0111 +./ E(?n 01(1 1 =0 (247

The sccond term of equation (2.47) can be shown, substituting in equation (2.46

with 7 = I? and since S7) is spherical, to be —4x E(?), in the limit as 7 tends to

zero. () denotes the electric field at the point P, Finally equation (2.47) gives
()l/ 0

By = // 2y Z2as 2.18

“on v gn " ( )

This is the Helmholtz-INirchihofl integral. It gives the clectric field at a peint /2 given
that it, and its derivative, are known along the surface S. It will be the starting

point for calculations later on.

If S is ot a closed surface, equation (2.48) will still apply, as a closed surface 57,
which incorporates S and encloses all sources, may be considered. The reflectivity

of the portion of S which does not coincide with S will be zero, and hence no
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contribution could possibly be made by it to the field at a point P within it.

2.4.2 Polarisation

Plane of Incidence

Figure 2.2: Polarisation state definitions.

The polarisation state of radiation is defined by the behaviour of the electric vector as
the field propagates through space. In the case where the electric vector is fixed with
respect to position/time (i.e.. it does not rotate about its direction of propagation),

the field is said to be lincarly polarised.

Figure 2.2 shows a ray of lincarly polarised light, wave vector ki, striking a surface.
The electric vector of the ray is defined within the e 7, et plane; this plane is normal
to the wave vector. The plane of incidence in the figure is defined by k; and the
normal to the scattering plane, in this case the z-axis. If the electric vector is
lying along the e dircction, perpendicular to the plane of incidence, the light is

s-polarised; if it is Iving along the e, parallel to the plane of incidence, it is p-

polarised. Any other hincar polarisation state may be expressed as a superposition

e 20060 060 6200 ¢0 600 &35S 00020000 ¢€
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2.4. ELECTROMAGNETISM 61

of these two orthogonal states. The superscripts — and + are used to represent a

quantity applicable to the s- and p-polarisation states respectively.

2.4.3 Reflection Coefficients

The Fresnel! reflection coefficients, R, are defined here as a multiplicative factor on
an incident wave, upon reflection from a flat plane, to obtain the reflected wave.

These reflection coeflicients are polarisation dependent such that

Ef = RTEF
Ey = RTET

and may be complex.

They are expressed astH?

cos 0;sin0; — cos ¢sin @

RY =

cos 0, 5in 0; 4 cos ¢ sin ¢
_ cos 0;sin ¢ — sin 0, cos ¢ .
cos 0, sin ¢ + sinl; cos ¢

where 0; and ¢ are the angle of incidence and transmission respectively, as shown in

figare 2.3, They :ac directly applicable at a dielectric interface.

For a metal surface, cquations (2.49) can still be applied if the “transmission angle”
¢ is redefined. In general. for a metal surface with comiplex refractive index n(147x)
and light incident av an angle of 0;, the values of sin¢ and cos ¢ in equation(2.19)
are given byl

. 1 —n -
sing =  ————=-3iN
¢ n(l + r?)

i

cos@ = ¢ = g(cosy + sincy)
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ny

0i

Figure 2.3: The geometry used for defining the I'resnel reflection coefficients.

with ¢ and 7 being given by

tan2y = . e - (2.50)

RY =1

2.4.4 The Kirchhoff Approximation

The Kirchhoff (or Physical Optics) method is a technique for solving equation (2.48),
the Helmhboltz-Rirchhoff integral. It consists of approximating the surface field (the

sum of both the mcident ana scattered fields at the surface) and its nornial derivative

at a point on the rough surface to those given by the tangent plane at that point.
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This means that the scattered field is simply the incident field multiplied by the

reflection coefficient. The approximation may be written as

E, = (1 + R)E,
aEia
dn

OE;

= (1-R)—

e
where E; is the incident field, and F,, is the field at the surface.

Throughout this work, reference to the Kirchhoff approximation strictly relates to
the definition above, not a single scatter approximation (to be discussed in chapter

four) which usually goes hand in hand with it.

Validity of the Kirchhoff Approximation

(b)

Figure 2.4: The tangent to a surface feature with (a) large and (b) small radius of
curvature compared with the illuminating wavelength.

Obviously, the Kirchlioff approximation will be good when the radius of curvature
of a surface featuve is large compared with the illuminating wavelength (see figure

2.4), or identically, the curvature, C, is small in comparison with the reciprocal of
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the wavelength:
c(=2) <3 (2.52)

r

Beckmann('® and Ogilvyl! state two criteria which are slight variations upon equa-

tion (2.52). Both are derived from geometrical considerations; the first is

_4mcos ¢

(I 3

where ¢ is the local angle of incidence on a tangent plane. Unless ¢ is greater than
85 degrees. this inequality will support greater curvatures than will equation (2.52).
The second variation,

C < 3{:(‘0530 (2.54)

again weights the inequality in favour of larger curvatures until the angle of incidence,

0, is greater than 47 degrees.

For an understanding of where these inequalities come from, the reader is referred
to section 4.2.2 in reference [1]. The purpose of presentiug them here is to show that
equation (2.52), to be used below, is sufficient as limitation on the applicability of

the Nirchhoff approximation.

The reason for expressing the inequalities in terms of C is that the curvature dis-
tribution of a Gaussian random rough surface ha- already been determined; it is
Gaussian, has a zero mean and a standard deviation of

‘.2\/§a

a
e

The standard deviation will determine the proportion of the surface curvatures which

are large enough to invalidate equation {2.52).



E
E
:
@
c
E
E

2.4. ELECTROMAGNETISM 65

In what follows, an attempt is made to gain some idea of the surface parameters
(standard deviation and correlation length) which are allowed within the Kirchhoff
approximation. It is important to note that it is the approximation of a surface
point to its tangent plane which is being examined here, not the validity of the
application of the single scattering model (which will be examined in more detail in
chapter four). The dependence of the inequalities on the angle of incidence will be

ignored, as this only has a noticeable effect when large.

e percentage of curvatures which lie within equation (2.52) is easily determined.
Equation (2.33) is substituted in to the limit of equation (2.52); the number of
standard deviations available within the Kirchhofl approximation for a particuiar
surface is then

r2

o 25
N = 2V30A (2:50)

which is casily converted into the percentage of curvatures lying within equation
(2.52) by noting that the probability distribution for a Gaussian probability density
function is the crror function. The fraction of curvatures, f, within the limit of
equation (2.52) is therefore

f=2erf(N) (2.57)

Figure 2.5 shows the limits of equation (2.52) for boundaries of N = 3,2.5,2,1.5
and 1 (99.7%. 98.8%, 95.5%. 86.8% and 68.3% of curvatures respectively within the

limit).

As can be scen from the figure, within the light region (to all intents and purposes),
the whole distribution of surface curvatures obeys inequality (2.52): in fact, the
majority of these curvatures will be close to zero (the mean) and well within the

limit.
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T/A

Kirchhoff Approximation Valid
6.0

40

20

A

0.0 .
0.0 1.0 2.0 3.0

/A

5.0

Figure 2.5: Regions of validity of the Kirchhoff approximation for Gaussian surface
parameters. The percentages represent the proportion of surface curvatures which
lie within the bounds of the limit to the approximation as given by equation (2.52)
Although there is no clear line at which a boundary between applicability and non-

applicability may be defined, the Rirchhoff approximation can be applied with con-

fidence to any Gaussian surface within the light region. It is likely to meet less

success with surfaces closer to the darker vegion, fairing worst near to the o axis.

The dependence of applicability on the angle of mcidence will only manifest itself
with those surfaces which Jie close to the boundary of the ‘good’ region of the figure,

and then only when the angle of incidence is large.
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Chapter 3

Experimental Procedures

3.1 Random Rough Surfaces

All of the surfaces to be studied here will be two-dimensional, i.e., the roughuess of
the surface will not depend upon direction — it will vary as a function of hoth & and
y. They will also have Gaussian height distributions and correlation functions. — the
reasons for this are that it 1s possible to create a surface with known Gaussian statis-
tics; it is easy to woik theoretically with such suwrfaces and thai ihere already exists
a selection of Gaussian surfaces whose parameters are known cnd whose scattering

12,

properties have been investigated One-dimensional surfaces are not considered

in vhis work as they do not produce the required two-diniensional speckle patterus.

3.i.1 Surface Manufacture

In order to gain a measure of control over the statistical properties of the surfaces,
a method developed by Gray(" was used. This method involves coating a glass

substrate with a layer of a photoresist which has an approximately linear height re-

67
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sponse to exposure time. The coated substrate is then exposed to speckle patterns
created by illuminating ground glass. The surfaces used for experimental measure-
ments presented in this work were not manufactured by the author, but were chosen

to enabie comparisons with existing published work.

Preparing the Substrate

The aim here is to deposit a {lat layer of photoresist onto the glass substrate {ap-
proximate dimensions of 50 x 30 x 3mm), with suflicient thickness to allow a surface
with an rms height of at least 2um to remain after the uecessary etching. This turns

out to be an 1nitial coating arouud 11um thick.

The first stage to be considered will be cleaning the glass substrate; this is important.
not only for improving the adhesion of the photoresist, but also to remove any traces
of dirt or chemicai impurities which may affect the final coating. Initially, the glass
piates are washed in hot water with a detergent to remove grease and dirt. Next, the
plate is cleaned with acetone to remove any chemical deposits on the surface — some
of which will be left by the detergent. Finally, the plate is wiped with isopropanol.
This last stage is necessary since it was found that acetoue leaves deposits which

adversely affect the photoresist, producing striations.

The photoresist used, which was found to have a good linear response to the exposure
timu, 1s Shipley S1400-37. This photoresist is also sufficiently viscous to procuc.
a thick coat on the substrate. The method of spin coating is used to deposit the
photoresist onto the substrate; the figures given below were found empirically, and

produce a uniform coat of photoresist of between 10 and 12 g thickness.

- - N N AR R N . o~ e . .. H . . . PR b . e . R o . - .
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A cleaned substrate is fastened to the centre of a turntable set up to spin at 300
revolutions per minute. While the turntable is stationary, photoresist is applied to
the centre of the substrate with a syringe, until the natural spread of the liquid
reacnes the edges of the glass, about 3ml. The turntable is now set spinning for
four minutes. Again with the substrate stationary, a similar dose of photoresist is

applied. Finally the turntable is spun for a further four minutes.

After allowing twenty four hours to dry at room temperature, the coated substrates
are baked, at nincty degrees celcius (this is below the temperature at which the
photoresist melts) for thirty minutes, to drive off any remaining solvent in the pho-

toresist layer. Iv is now ready to have a surface profile imposed upon it.

A few factors need to be considered during the manufacture of th.: coated plates.
In order to produce a perfectly flat layer of pliotoresist, air bubbles must not be
allowed in the photoresist; as long as care 1s taken with the syringe then the process
outlined above will ensure this. Dust must not be allowed onto the plates at any
stage during manufacture; one speck of dust can produce a relatively large area
which will not reacy properly to exposure — this is especially a problem during the
twenty four hour drying period, any dust settling on the surface during this time
will stick, and after exposure, a spike can remain sticking up above the surface. It
1s possible for dust to settle on the photoresist near the edges of the plate without
invalidating its use as a surface. Finally, carc must be taken uot to scratch the

photoresist, compressed air should be used to rerove any dust which settles after

drying.
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Etching the Surface Profile

The required surface profile, as mentioned previously, is Gaussianly distribuied.
Fortunately, a profile of this approximate nature can be achieved by simply exposing
the photoresist to eight uncorrelated speckle patterns, the number being found as

follows.

It can be shown that the probability density of the intensities in a speckle pattern

with mean intensity 5 obeys negative exponential statistics!',

1 I
PrI) = ;—)—e.\'l) (-7—]) (3.1)

and that the (unnormalised) probability density function of a superposition of NV

uncorrelated speckle patterns, each with mean intensity 7, is

IN-INN IN
gl — - w ——— 39
Pi(I) N 1)!,].\.¢xp( ; ) (3.2)

The variance for this intensity distribution is

2
2 I

TN

Repeated integration by parts is necessary to find this.

Figure 3.1 shows the form of this distribution for various N. Eight speckle patterns
are taken as the optimum number to achieve a Gaussian profile with the maximum
possible variance — the number at which a Gaussian curve, with a variance equal
to that given by equation (3.3), is most similar in shape to the probability density

function, equation (3.2). Note that as NV increases, the profile becomes more Gaus-

sian (cf. central limit theorem), but the variance of the distribution reduces, thus

E.EEBEEEEEEREEENRNERBMR B N N N B B B BB B N BN BB B N




3.1. RANDOM ROUGH SURFACES 71
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Figure 3.1: The probability density distribution of the intensity of the superposition
of N uncorrelated speckle patterns, cach with mean r; = 1, for various V.

reducing the rms surface height — a gnantity potentially required to be as large as

possible.

These cight uncorrelated speckle palterns are created by illuminating. in turn, sep-
arate plates of ground glass with the 457.9numn wavelength of light from an argon ion
laser. The photoresisy used is particularly responsive to wavelengths approaching

the ultraviolet region of the spectrum.

The geometrical arrangement for the exposure of the coated substrates is given in
figure 3.2. Collimated light is incident ou the ground glass diffuser i an attempt
to produce a uniforin field at the surface — important to give a uniform statistica!

variatiou to the surface height. The size of the illuminated area of the diffuser, and
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the distance of the substrate from it, determine the speckle size on the photoresist —
this determines the correlation length (the 1/e point of the autocorrelation function)

of the surface.

Photoresist
Coated Substrate

20x0.4 15 pm
Objective Pinhole 200 mm

\—\\/—‘/ Lens

Ground Glass
Spatial Filter Diffuser

Figure 3.2: Arrangement for exposure of photoresist coated plates during siurface
creation.

For a more precisz idea of how the arrangement wili affect thie correlation length of
the surface, a simple statistical study is necessary. Given that the heam incident on
the ground glass plate has a Gaussian cross-section, then the correlation between

two points of the speckle pattern isti!

. . ‘
__-"Q”“’AL] ) (3.4)

CilAr)=cxp | —

1{Ar) I ( l N
where it has been assumed that the speckle pattern is statistically stationary. Aris
the distance between two poiuts of the speckle pattern, and w is the 1/e half width
of the Gaussian beam profile at the ground glass plate. A is the wavelength of the

light, and z i1s the distance of the surface from the diffuser.

From equation (3.4) it can be secen that the correlation length of a speckle at the




® S & © & & 0O 00 OO O 60 0 9O 00 000 06000000 0 0
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surface, and hence the correiation length of the surface. will be

- (3.5)

The parameters = and w in the arrangement can be adjusted until 7 is of the required
size. Generally = will be set such that it is just large enough for the speckle field
to appear uniform over the substrate (about 400mm), anythiug larger would just
reduce the amount of power incident on the photoresist and hence increases exposure
time. This leaves w as the main handle on 7, but because it is not possible to measure
the 1/¢ half width of a Gaussian beam quickly and precisely, especially for large
when w is small (if the required r is 150pm then w is approximately 0.3mm — for
the wavelength and distance specified above), 7 can ouly be roughly controlled, Fine

tuning is readily achieved by adjusting = slightly.

The rms height of the surface can be controlled by exposure time; the imaximum tine,
before the photoresist is removed down to thie glass sabstrate, Lias heen determined
experimentally for substrates prepared using the procedure described above, and is

given in minutes by
275

i =
I

(3.6)
where [ is the average light intensity in the plane of the substrate in the arbitrary
units given by the “Berry mcler™. The number 275 was found experimentally, and
converts the mtensity readings given by the meter into minutes of exposure time.
The finally calculated exposure time should be divided by eight and each speckle
pattern should be projected onto the photoresist for this time. This maximum

exposure will give the surface an rms height of approximately 2um.

After all exposures are complete, the surface is developed in a mixture of one part by
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volume of Shipley AZ-303 to five parts water for thirty seconds. Finally, the surface
is rinsed under running water for about three minutes, and dried with compressed
air. A quick check should be made to ensure that the glass substrate has not been

exposed through the photoresist at any point.

3.1.2 Gold Coating

The last stage in the fabrication of a surface is to deposit a thin layer of gold, using
vacuum deposition equipment, onto the photoresist. This layer provides a highly
conductive front to the surface, enabling its scattering properties to be compared

with theoretical studies which assuine the surface is a perfect conductor.

The complex Fresnel reflection coefficients for gold are given by the sequence of
equations in chapter two, starting with equations (2.49). The square magnitudes
of the coefficients, R* and R~, the reflectivities, are shown with respect to angle
in figure 3.3, the refractive index of the gold taken at a wavelength of 0.633m as
0.167+3.14%.142 1t can be seen that the curves are close to unity and approximately
flat, indicating that the reflection coefficients are only loosely dependent on the angle
of incidence; a favourable comparison with a perfect conductor where [RJ? is 1 for

both polarisation states.

3.1.3 Surface Characterisation

Since only rough coutrol over the statistical parameters of the surface is attainable,
a method is required to gauge more accurately what these parameters are. For all

of the surfaces mentioned in this work, a Rank Taylor-Hobson Talystep mechanical
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Figure 3.3: Fresnel refleciion coeflicients for gold at A = 0.633um over a range of
angles.

surface profilometer was used. It has been shown that this instrument does not
significantly damage the surfacel™; nevertheless, measurements were made away
from the region on which light was to be incident, and the assumption that the

statistics are uniform over the whole surface was made.

The profilometer operates by dragging a stylus across the surface; the stylus available
was a diamond wedge of dimensions 1.8 x 0.5um. A force is applied to the stylus
to maintain its position in contact with the surface, and this force varies as the
height of the surface changes. Generally the load applied to the stylus should be

around 6mg at the middle of its displacement range, this will mean that for a typical

surface. the force should vary between about 211¢ and 10mg at the extre ues of the
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range. The force is not constant as this is the quantity which is measured by the
instrument and converted into an electrical signal. This electrical signal is amplified
and filtered to remove high frequency vibrations, finally passing to an analogue-
to-digital converter. The end result of this process is a digital representation of a
2mm line on the surface; computational processing can now be performed to find

the various statistical quantities.

Processing tl,  -rofilometer Data

As 1t 1s not likely that the surface could be positioned, by hand, exactly level under
the stylus, the trace must have any overall trend in its gradient removed before
either of the surface parameters can be obtained it. To achieve this, a straight line
is fitted to the data by the leasi squares method, where the surface height at any
position along that line is the distance to the trace along a perpendicular to the line.
In other words, the trace is shifted to the origin and rotated such that the mean
height and the mean gradient are both zero. The gradients removed by this method

can be smaller than 0.001.

The standard deviation of the trace is now easily calculated. This will be the
standard deviation (rms height) of the surface over the length of the scan. Figure
3.4 chows a histograiu of the distribution of heights over one scan, a Gaussian curve is
also shown with the same standard deviation, It can be scen that the data has a form
which is roughly Gaussian, the departure being due to the long correlation length of

the surface presented. The actual value of the standard deviation attributed to the

surface will be the average of many such individual trace values; the error associated
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with it will then be the standard deviation of the spread of values.

Normalised
Frequency

-

N\

/] % Star.ldzfrd = 2.09um
N W Deviation

R

1 ”j:nr | nlrﬂ | ' i \:-_ |
-80 -60 -40 -20 0.0 2.0 4.0 6.0 8.0
surface height/ym

Figure 3.4: Histogram of the surface heights over a single scan of a surface (surface

#80 — see later), a Gaussian curve with the same variance is also shown.

The correlation length of the surface is obtained by performing an autocorrelation on

the trace. The result, after dividing by the variance, is the autocorrelation function.
" This will be approximately Gaussian in form (since the beam profile used to create

tne surfaces was approximately Gaussian), at least for very low lag (Ar) values:

2
Css(Ar) = exp (— Lﬁ;") (3.7)
T

/

A least squares fit of this will give the correlation length:

r?n
o= \J_.i_ﬂ___l €' _yA (36)

S (lny)?

Figure 3.5 shows the correlation fuuction calculated for a surface trace. Equation

(3.7) is also plotted for a correlation length calculated by eguation (3.8) {or the
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Figure 3.5: The correlation function of a surface scan, a fitted Gaussian correlation
function has a correlation length of 19.54um.

portion of the function which has a value greater than 0.1; i.e., n in equation (3.8)
is determined by the point at which the data first drops below 0.1 with mcreasing
lag. This is necessary because as at higher lags, the correlation function will only
go to zero for an infinite trace length. Again the parameter for the surface and its

error are ohtained by averaging many such correlaticn lengths.

Stylus Size Considerations

For a surface where the radius of curvature of the features is greater than the width
of the stylus tip, it can be assumed that the size of the tip will not greatly influence

the mieasurements obtained. However, once the surface features are of a smuilar

size to the stylus used to trace them, the tip dimensions will affect the measured

OOOOQCOOOOOOOO‘3000000000000'00000
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surface heights. The 1.8um x 0.5um stylus used here is suited to the analysis of
onc-dimensional surfaces, and does not introduce significant error in these casest*;
but with a two-dimensional surface, the extra width along one side will prevent the
stylus from properly tracing the surface portion underneath its centre. The stylus

will in fact trace the highest points under the whole of its width. as can be seen in

figure 3.6.

Traced Path

L T R R L Ll a . U T R R P Y

Surface Profile

Figure 3.6: Finite stylus tip size prevents accurate tracing of surface features of
a similar size. The scale has been exaggerated, generally the effect is much less
noticeable.

The errors introduced to the surface parameteis have been examined(*, based on

an assumption of & circular tipl*, Relations derived between the measured surface
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parameters and the actual values, for Gaussian surfaces with a Gaussian corvelation

function, such as those studied here, are:

2 2 2 a1
2 2 ¥R 6ot 120 2
z — —— — — —— ., cl)
T ’ [l 6 (1 T2 T4 (39)
2 — 2 ezp2 () .
T o~ =717 )1=-157vR°| - (3.10)
.

where the subscript m represents the value as measured by a stylus tip with radius
R and v is the rms curvature of the surface:

230
2

T

1=

(3.11)

as derived in chapter two.

The actual effect of this finite tip size (1.8y/m across the width) wili introduce an
error of less than two percent to the measured parameters; although much larger
than for one-dimensional surfaces, it is still swamped by the statistical uncertainty,

even for the roughest of surfaces studied here (see below).

3.1.4 The Surfaces Studied

Three surfaces will be used in the experimental investigation, all of which are ap-
proximately Gaussian in both height distribution and correlation function. The
patameters of these surfaces are given in table 3.1. Surface #80 has previously
been reported to be a Beckman surface, i.c., it exhibits only single scattering!'?.
Surface #83 is one which shows strong enhanced back-scatter, a multiple scatter-
ing phenomenonl!?. Both of these surfaces were manufactured by Mendez and
O’Dennell. Surface #239 was chosen as an ‘in between’, it is expected to bovder on

the realm of multiple scattering — this was manufactured by Kimf*1,
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Surface | o / um T [/ um

#80 | 227+£0.2 20.7+20
#239 {134 £01 7.0+£0.5
#383 09+0.1 273+£0.08

Table 3.1: Rins height and correlation length for the surfaces to be studied.

The surfaces have been plotted on a graph showing the validity region of the Kirch-
hoft approximation (up to 99.7% of curvatures valid) in figure 3.7. It can he seen
that all three surfaces have gradients varying sufficiently slowly for the Kirclihoff

approximation to be expected to apply.

/A
40.0 —

30.0 |-

#239

10.0 |- #33

0.0 S R e 3
0.0 1.0 2.0 3.0 4.0 5.0

O/A

Figure 3.7: Surfaces #80, #239 and #383 plotted on the Kirchhoff validity graph
for a wavelength of A = 0.633um. The large black areas represent the errors in the
measuremnents of the surfaces.
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3.2 Obtaining the Angular Correlations

3.2.1 Experin: ital Equipment

The equipment. used is shown in figare 3.8. The illumination source is a Uniphase
10m W Helium-Neon laser emitting linearly polarised light at a wavelength of 633nm.
The orientation of the laser controls the polarisation of the light incident on the
surface. The speckle patterns are digitised with a Princeton Instruments 512 x 512,
271 pixel, sixteen bit peltier cooled CCD camera (accurate to one bit — the
readout noise is about 10 photoelectrons), and transferved to an magneto-optical
disk for later off line processing. A pelariser is positioned in front of the camera to
enable control over which component of the scattered light is detected. No imaging
op*ics are used, a speckle pattern being formed at the CCD element purely by the

free space propagatiou of light from the surface.

The camera was not actually mounted on the end of the army as shown iu figure 3.8

a counter weight was removed {rom the arm, aud the camera was mouuted i its

Vace --- much closer to the bearings — as shown n figure 3.9.
1

As the camera is now mounted behind the surface, a mirror must be positioned at
seme length along the acrm, angled such that the light scattered around the specalar
direction is sent towards the camera. The camera’s position and the angles the
camera ana mirvor were tilted at were chosen to give a path lengta from the surface

to the camera of around 900inm. The camera was also high enough above the

surface that its view was not obstructed by the surface mountings. Fine control of

&09000QOOOOGQQOQGPOQQQ94000_99.9'0;.“.0:0
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Laser -~

~~Jd Frame
Grabber

.Delivery Optics

"'.CCD Camera

Polariser ,

Sun
Workstation

\ ‘Surface Under Investigation Network

L

L.

AN Stepper Magneto-
> optical
~~-. Motor ¢
Inicilace storage

Figure 3.8: Schiematic diagram of the rig used to control incidence and viewiog
angles.

the path length was obtained by moving the mirror along the arm and illuminating
the surface at a height which would mean the centre of the camera was looking

ciactly at the laser spot.

The angles of the niirror and camera mounts were cut to a tolerance of less that 0.1
degrecs. A weasurement of the path length after construction gave a distance of

500 £ Srnm.

The size and number of speckles formed at the CCD element is an important consid-
eration. Obviousiy. a large nwnber of speckles in an image mean that the statistical
properties of that image, such as the mean and variance, can be well defined. How-

ever, this desirable cr1 erior must be traded against the need for cach individual

speclile to be well defined, a Hmitation imposed by the pixel size of the CCD array.
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16 bit CCD camera
tilted down 15 °

To workstations
From

Laser

Mirror tilted

back 7.5 ° Mount in place of rig

arm couater balance

ERotation axis

Rig arm

Figure 3.9: The actual arrangement used to mount the camera. The camera is stiil
looking in the specular direction of scattering from the surface.

The speckles in the image must each have sufficient intensity information in order
for a correlation to be meaningful. Speckles with a ten pixel diameter provide this

information, while still allowing around 400 speckles over the whole image.

The number of speckles on the CCD element is controlled by the size of the illumi-
nating spot on the surface. Since the detector is in the far field, the speckle size, w,
will be set by the diffraction limit of the system, roughly given by:

1.22) f
w =
D

(3.12)

the aperture diameter, D, being the beam size at the surface and the focal length, f,
being the distance of the detector form the surface (in this case, 900mm assuming
the beam comes to a focus at the CCD element). If radius of a speckle is w, the
area of a speckle, mw?, is the 14 x 14mm? CCD element area divided by 400 (the
number of speckles requiredj, about 0.57m?. The required beam diarneter, on the

surface fromn the above equation is therefore roughly 3mm.

l )
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Note that the CCD element subtends an angular of around 0.9 degices in both
directions to the surface (solid angle, 0.0002 steradiaus); an individual speckle has

a width of about 2.5 arc minutes subtended from the surface.

Control of tI - angle at which the incident beam strikes ihe surface (the orientation
of the surface), and the angle at which the camera is positioned (the orientation of
the rig arm), is by means of two svepper motors. These provide an angular resclution
of 2/ (two arc minutes) per step. Currently, the geometical situations attainable with
the rig are limited to those of ‘in-plaue’ scattering — the surface normal, incident
beam and direction of obscivation ail lying in a plan~. This. however, is ot a

probhlem liere as observation 1> confined to the specalar direction.

A PC, which performs many duties in the laboratory, provides the interface to the
stepper metors. The Sun workstation controlling the experi:nent communicates with

the PC via a scriai iine.

Due to the natuic of the measurements songht, special care must be taken to ensure
that the cenue of the laser beam is targeted exactly on ilic axis of rotation of
the surface. Failure to achieve this will mean that at different angles of incidence,

separate portions of the surface will b illuininated.

In order to gain the maximum advautage offered by the camera, the iutegration time
is raised or lowered such that the maximuin pixel value in any one image is between
50000 and 65690 (the maximum valuc attainable Leing 65535). This means that as
the inteusity changes over the range of speckle patterns, the camera will adjust to

utilise niort of its intensity resolution. The max.mum intensity the camera can view

by the lastest shutter speed (alout 1Cms). As the correlation process

is lnaited




36 CHAPTER 3. EXPERIMENTAL PROCEDURES

described below removes any dependence on the overall intensity of the speckle
pattern, upsetting the rclative intensities between the patterns will not affect the

correlation results.

3.2.2 The Speckle Patterns

Figures 3.10, 3.12 and 3.11 show histograms, taken from a single frame of the raw
camera data of speckle patterns, obtained from surfaces #80, #239 and #33 at

various angles of incidence. and for different polarisation arrangements.

No. of Pixels )
: 60000 logl%(l_\lo. of pixels)
50000 4
3r
40000 1
{ 2 -
30000 11k i+
. L D
XRE - 1 1 -1 | 1 T
20000 Hi. 0 10000 20000 30000 40000 50000 60000
1§ Pixel Intensity Value
10000 H
0 - ) ¥ [ { T ) 1 T
0 10000 20000 30000 40000 50000 60000
Pixel Intensity Value |

Figure 3.10: Histogram of the intensity values of a speckle pattern forianed by snrface
#£30 at ten degrees incidence and observation in the specular direction. Incident and
detected light are both s-polarised. The same data plotted on a log scale is inset.

As can be seen, surface #80 and surface #3833 produce speckle patterns that have
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Figure 3.11: Histogram of the intensity values of a speckle pattern formed by surface
#83 at fifty degrees incidence and ohservation in the specular direction. Incident
light is p-polarised and the observed pattern is s-polarised. The same data plotted
on a log scale is inset.

roughly the negative exponential histogram expected!*?, but that the first few bins
are considerably less than they should be. This may be explained by noting that
a large amount of light is scattered around the laboratory by the rough surfaces,
and that this will be registered by the camera as an ambient light level, adding to
every pixel and shifting the histogram to the right; i.e., zero is no longer the mosi

probable intensity.

© 0 0 6 00 0 @ 0606 006€ 0200500060606 900

The quantity o;/(I), which should be 1 for a true negative exponential, for the
speckle pattern in figure 3.10 is 0.72. This increases to 0.91 if the first two bins of

the histogram are rermoved from the calculation, giving evidence that ambient light
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is the distorting factor. This may be shown further by supposing that the lowest hir
of the negative exponential should contain all the light which has appeared in the
two lower bins — adding this in gives a o7/(J) = 0.98. The errors on these figures

may be considered as £5%, being the statistical error on a sample of 400 speckles.

For figure 3.11, o;/(I) is 0.54, but increases to 0.88 after subtraction of the first
three bins. If the subtracted amount i added into what was the fourth bin then the

value increases to 0.93. As above, these figures have an error of +5%.

No. of Pixels
60000

30000 -
20000 |-

10000 - {1}

0 10000 20000 30000 40000 50000 60000

Pixel Intensity Value

Figure 3.12: Histogram of the intensity values of a speckle pattern formed by surface
#239 at thirty degrees incidence and observation in the specular direction. One data
set has incident light s polarised and observed p-polarised, the other has incident
light p-polarised and observed s-polarised.

As the mean light level is subtracted from each speckle image tefore any further

processing, this ambient light is not expected to greatly affect the correlation values
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to be obtained (in terms of invalidating any comparisons to theoretical results).

The large shift to higher vaiues for surface #239, in the cross polarised case, may
again be attributed to the ambient light level. The shift will be enhanced by the
low intensity detected compared with the ambicnt light level. When considering the
integration time of over 30 seconds and the large amount of light scattered around
the laboratory which was not mitially depolarised, it is surprising that the shift is

not greater.

The departure from the general negative exponential shape of the histograms in
figure 3.12 is not so casily explained. It is possible that it is due to a large amount
of co-polarised light reflecting off of the polariser placed hefore the camera, and
striking the surface again, producing (albeit with less magnitude) another cross
polarised speckle pattern. The observed histogram would therefore bhe a combination
of the two patterns, which would give, as secn earlier. a inore Ganssian shape, The

specular geometry of the experiments wouid support this hypothests.

However, it must be borne in mind that the cress polarised results for surface #239
were taken near ihe practical limits of the equipment used: previous work with this
surface (studying the average inteusity in a given direction) reported no observed
depolarisation!'!, The experimental rig was not designed with a view to studying
very low amwunts of depolatisation. In future, the rig could be modified to cope

with the above problem, allowing thorough scattering studies from surfaces such as

surface #239 which only evidence slight multiply scattering,.
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3.2.3 Processing the Speckle Iinages

After having recorded and stored a range of speckle pattern images (the range could
be images at incident angles separated by one degree -— one image representing one

particular alignment of incidence and observation), the data must be processed to

obtain values for the correlations.

Correlation

The numerical method employed to obtain the correlation coeflicient uses the con-
| I i1 my - 1 Rl P - 1 N 4 1

VOIULIOI LUeOreits. rl“ﬁ “ll.‘LllUd Wld CIIOREIL OVELD @ STHIPIC SUINIIALIOI Proceaqure ds

it gives the location of the best correlation, without presuming it is an exact overlay

of the two images. An outline of the computaticnal steps involved is giver below:

1. Zero the mean and normalise one image (the reference image).
2. Perform a fast Foutier transform (FI'T') on the reference mmage.
3. Find the complen conjugate of the transform.

4. Zero the mean and normalise another nnage (a data image).

(@1

FFT the data image.

6. Perform a pixel by pixel multiplication of this transform with the conjugated

reference transform.

7. Find the inverse I'I"T of the above product.

8. Scarch for the peak in the corvelation map just produced.
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Normalisation is achieved by setting the sum of the value of all pixels squared to

one (3_(a?) =1).

This whole procedure results in just one number, the correlation coeflicient, between
two speckle patterns at different angles. This number is in the range 0 to 1, 1
occurring when the reference is correlated with itself (identical) and 0 oceurring
when the two images have no similarities whatsoever. To obtain the curves presented
later, a range of *data’ images must be correlated with a siugle reference” image: .o,
the above procedure must be repeated from step 1 until sufficient values at difierent
angles have been procured. One set of speckle pattern iinages is enough to produce
correlation curves for any reference angle within that set; only one experimental run

1S necessary.

Figure 3.13 shows two speckle patterns and their correlation map. Figure 3.14 is
a trace through the centre of the correlation map, the height of the peak is the
correlation coeflicient (note that the width of the peak gives the speckie size in the
autocorrelation case, i.e. when the speckle patterns are identicaly. The peak will
not appeai at the centre of the graph if the two speckle patterns have a relative

shift,

The small fluctuations near tlie z-axis in this graph, indicating that small corre-
lations exist at relatively large displacements of one speckle image with respect to
the other, are an artifact of the finite size of the patterns correlated. If the corre-
lated ficlds we > infiuitely large, these fluctuations would vanish leaving a smooth

line along the axis. Notice that the height of the fluctuations reaches a maximum

of about 0.05; this is the level of uncertainty expected from inmages, such as these,
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Figure 3.13: Obtaining the corvelation coefficient of two speckle patterns. The cross-
correlation of two normalised, zeve mean speckle patterns giving the corvelation may .

AN

containing 400 speckles.

This mmimum level of confidence will affect the correlation coeflicient once it is
reduced to that extent. It will mean that n later correlation curves, the minimum
of tha correlation coellicient will approacn this level and not drop to zero as may be

expected. Various methods have been employed to extract the correlation coeflicient
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Figure 3.14: A slice along a horizontal fme thiongh the centre of the correlation
map in figure 3.13. The peak of the enrve is the corvelation coctlicient.
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from the correlation maps created {sce below), but the level at whicli the correlation
is no longer meaningful is the same for all methods, the differences between them
being purely cosmetic — i.e. some give more information below this level than

others, but information in this region is unreliable.

Mean Intensity

As the relative intensities of the speckle patterns have been disturbed. it is not
possible to derive an intensity plot by simply averaging the pixel values of cach
mmage. As any explanation of the correlations observed must also apply to the
intensities, it was considered necessary to perform experiments to obtain the resalts

under similar circumstances.

Unfortunately, previous intensity results obtained with (essentially) the eguipment
described below, on the same surfaces as studied in this work, weve not considered

with observation in the specular direction*1H,

The illumination of the surface is by means identical to that used to obtain the
correlation results. However, now a photomultiplier tube (PMT) is used to take the
results instead of a CCD camera, this has a lens placed in front of it to collect the
scattered light. The PMT is connected to a high tension power supply and its output
is fea into a phase lock-in amplifier. The amplifier is connected to the ubiquitous
PC which communicates with it via an IEEE interface. A beam chopper placed
about half way along the beam is connected to the amplitier. The Sun workstation

is no longer necessary in the chain,
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3.2.4 Enhancements

Some experimental limitations on the accuracy of the correlations can be removed

during processing, these will be discussed now.

Image Alignment

A problem noticed while sequentially displaying speckle images at high speed
always a good idea, to ensure that the data looks valid — was that as well as
3 l ) a 1 1 ,1 l t . cn e l ,l P | P f .'1. ]‘
evolving as expected, the whole pattern was slowly osciliating from side to swde;
this was possibly a problem with the stepper motors. The oscillation meaut that any
two speckle images would not overlap exactly. For the purposes of the correlation
this is generally not a worry; however, if any processing is to be performed on the

speckle images, misaligned patterns could pose a great problem.

The speckle patterns ave aligned by performing a correlation, hut instead of finding
the value of the peak in the correlation map, the position of the peak within the
nmap is determined. This gives the oftset which must be applied to one inage before
it overlays the other — the whole image set is aligned in this way with the reference
image, and a zero border is set around each image which absorbs the arcas which

do not overlap.

After having employed this technique it was found that correlation values increased

slightly for the came set of data. Obviously some non-trivial degree of correlation

must exist before this techmique could work.
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Pattern Shrinkage

o

If equation (3.5 in section 3.1.1) is expanded to depeund on cartesian coordinates,
such that there exists a 7, and an orthogonal 7,, then it can be seen that any
increase in the beam width along the x direction, w,, would decrease 7 whilst
leaving 7, unchanged. This situation occurs for increasing angles of jucidence in
the experimental work. As the surface is tilted to higher angles, so the Jaser beam
spot elongates across the surface along the horizontal divection: this means that
the specikle pattern wiil shrink horizontally (and also change to some extent) at

imcreasing angles of incidence.

As the shrinkage is not sccounted for in any theoretical studies later, twe techniques
were employed in an attempt to minimize its effect. The first involved placing a
mask on the surface allowing only a certain area to be tlluminated, regardless of
the angle at which the light is incident. The second used “tall, thin® images in the

correlation procedure described above.

Figare 3.15 shows a comparison of experimental correlations taken from the same
surface (#30), with and withont a mask over it. As expected, the correlations at
low angles are unaffected, but as the angle increases the corvelation values from the
surface witl; the mask over it are greatly increased. The improvement is lost at even
higher angles as the mask introduces ertors of its own as its finite thickness casts

shadows onto Lhe surface.

Since the mask increases the correlations in sonie circumstances (hence removes a

source of error) and never reduces them, a mask will be placed on all surfaces fo he

experimentally studied.
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Pigure 3.15: Graph showing the improvement in correlation values obtained at a
given angle by masking a surface to reduce pattern shrinking. The solid line is the
result fiom the surface masked the dashed one unmasked. Note that the vertical
distance between points shows a large enhancement.

For the other method, tall, thin images were obtained by truncating them i the @
direction. The reasoning behind doing this is that ihe shrinking effect will displace
speckles further away from the centre of the image by greater amounts: removing
the speckles with large displacements will reduce a source of error in the correlations.
One drawback with this method is that the number of speckles being processed is

reduced, and hence the reliability of the results compromised.

Improving the Reliabiliiy of the Lower Value Correlations

As mentioned above, and seen in figure 3.13, there exists a limit below which, the

‘true’ correlatior coeflicient cannot be easily distinguished from small correlation

fluctuations due to the finite size of the speckle images. The level of this limit,
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however, can be reduced simply by knowing that the true correlation is near the
cenice. So, if the arca of the correlation map, over which a maximum is searched
for, is reduced to a small section around the centre, the maximum found is more
likely to be the true correlation coeflicient. It no longer needs to be the largest peak

in the map.

A further imiprovement would be to have an aligned set of images. by a method svch
as that described above, and look only at the value at the center of (he correlation
map. However, in order to align the images some degree of correlation must exist,
so it is not possible to know lLiow to position those images, which. when correlated,
produce a value below the limit. One possible way to overcome such a handicap is to
keep a runuing total of the shift needed, and correlate each image with the previous
one in its set; i.e. the shifi needed to be imposed on the third image to align it
with the first is the sum of the shifts needed to align the second to the first and the
third to the second. This method. however, produced shifts which are inconsistent
with those produced by a direct correiation. The most likely explanation being that
by tracking the shift using a cumulative process, any errors will be cumulative, so
within just a few images, the shift produced will be wrong. Since the suifis involved
are only a few pixels and must be integer nunibers of pixels, a fairly large rounding

error will obviously exist.

. '.',
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Chapter 4

Single Scatter Analytical Study

In this section, the Kirchhoff approximmation is applied to the Helmholtz-Kirchhoff
integral to obtain a single scatter approxiination of the far field amplitude of the
scattered light. An analysis of the range of surface statistics that give a single

scattering surface is also undertaken.

4.1.1 Derivation

The Kirchhoff approximation will be used to obtain an expressions for the single
scatter component of the scattered amplitude in the far field by applying it to the

Helmholtz-Kirchhoff integral (equation {2.48) from chapter two).

Following Beckmaun{'9, an expression for the single scatter component of the scat-

tered light in the far field is derived. The scattering geometry is shown (onc di-
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mensionally) in figure 4.1. Light is incident on a point r with wave vector k; and
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scatters with wave vector K,; the positions of the source and observer with respect

to the scattering points are given by R; and R, respectively,

z RO

Figure 4.1: Geoinetry for single scatter component of scattered field.

Given an incident field ou a surtace, E,, the field after scattering once, £, can be

written from equation (2.48) as

1 Ay JE;
E,=——//Ei—-— s 1.
dr JJs T On v on ¢ (+.1)
where ¥ is the free space Green’s function:
eik,.ns )
v= (1.2)

The field at the surface, Ej,, and its normal derivative in equation (4.1) are given

by the Kirchhoff approximation (cf. chapter two),

L',', = (1+R)E',

JE., OE,
o = TR (1:3)
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where R is the Fresnel retlection coefficient at the point of scatteriug,.

Combining cquations (4.1 and 4.3) gives

E, = ﬁ/ [+ R)E,-% (1 — R)dv%ﬁ’d.? (4.4)
and by taking the incident field as a plane wave of amplitude Ey,
E; = Ege’® (4.5)
the normal derivative at the surface becomes
IL, = iEon k¢! (1.6)
on

Now by takiug the single scattered component of light out to the far ficld, R, can

be written in terms of the absolute position of the obzerver in the far field, Ry,
R,=Ryg—r (4.7)

where now kg and k, are identical. From equation (4.2),

ikoRo _
b= (eno ) T (1.5)
and
i tko Ro
g% = ~7:ﬂ.k‘, (E-}z'—o—) f‘_lk"r (49)

Finally, substituting these into equation (4.4), it becomes

Eo /e"OR" . itk ~ko )y @ ,
E=( /f in. [R(k; — ko) — (ki + k,)] ¢ ds (4.10)

representing the single scatter contribution to the scattered electric field, expressed

in terms of the quantities in figure 4.1.
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lane of Incidence

Surface Mean Plane

Scattering Plane

Figure 4.2: The general scattering geometry showing 9, 6, and 0;.

Beckmann? proceeds to develop a more approximate form of equation (1.10) for a
random rough surface ((x,y) with sides of length 2L (L >> X) which removes the
explicit reference to the surface normal. To distinguish this from the original form
(cqua.tiox.x (4.10), the electric field Ey) will be represented by the variable A. The

single scattered amplitude in the far field may then be written, ignoring the small

AyF:
_( 0 3)// eVl drdy 4.11)

where V = k, — k;, F3 is a geometrical factor and Ap is the field which would be

“edge” term, as:

reflected in the specular direction by p-polarised incident light if the surface were a

perfectly conducting smooth plane.

Expanding r and V into cartesian components, and applying the geometry shown
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in figure 4.2,

Aol L ViVt ,
A(0y,0,,05) = ((2‘2)?;) //_Le(“ Ve g dy (1.12)
wlere
2T
Ve = \ (Sill 0, — s, cos 03)
2
V, = T(sinO-;,:&in;;) (1.13)
2r
V, = T(cos()1+c0502)

Both F5 and iy are also functions of 0,0, and 0;.

4.1.2 Validity of the Single Scatter Model
A similar method to that employed to estimate the Kirchhoff validity will he used

here to obta . in estimate of which Gaussian surfaces are smooth enough to be
g

considered as single scatterers.

An intuitive assumption will be made, that double scattering first conics into play
(with changing angle) when the path of the light between two scattering points is
in a plane parallel to the mean surface plane. This condition can be seen in figure
4.3. The reasoning behind this assumption being that a surface which is not rough
enough to have any gradients complying with this condition, will not only scatt rthe
light away from itself, but will have a comparatively large distance between any two
sides cf a *valley’. This will make it almost impossible for light which is propagating
with a gradient greater than zero to strike the surface again. The technique does
not cater for any diffraction effect which will occur as the distance bhetween the sides

of a valley approaches a wavelength.
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Following the assumption, the surface gradient at the point of scattering st be
m = tan(n/4 — |0]/2) (L1

where 0 is the angle of incidence of the light.

6,2+ /4

Figure 4.3: The condition required before double scattering is evident.,

As this is a limit, it is possible to say that the surface will be a single scattering one
if the vast majority of its surface gradients are less thau 1 in naguitude. Since tiw
surfaces studied here are Gaussian, the surface gradients themselves have a Gaussian

distribution with zero mean and standard deviation

Ve

T

asr

(1.15)

(cf. chapter two). As previously determined, 99.7% of a Gaussian quantity lics
within three standard deviations of the mean. The condition may, therefore, be

written

3\/30 < tan(w/4 —|8]/2) (1.16)
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/A

16.0 ~ e e e
Beckmann Solution Applies
120 |-
#239 ﬂ
20 Muluple ,Séat)[reirr_i_n_g :-E_;/i((iem'i |

#83

4.0

0.0 :
0.0 1.0 2.0 3.0 4.0 5.0

Figure 4.4: Surface parameters for which the single scatter Kirchholf approximation
(Beckmann solution) is valid. Boundarices are placed at the three standard deviation
threshold. The swrfaces are plotted with the wavelength at A = 0.633;0n and for
normal incidence. Surface #8380 (not shown) Hes well within the vegion in which the
Beckmann solution applies.

where 99.7% of the swiface gradients are within the limit.

Figure 4.1 i a graph of equation {1.10), for normal incidence, with the Kirchhoff
approximation validity graph overlayed. The limit of the joint region of applica-
bility (the white arca) is roughly the same shape as and within the one percent
unitarity crror limit found for the region of validity of the single scatter Kirchhoff
theory by numerical simulationl (for all angles of incidence). The close agreement
between the results derived from the statistical propositions about when the limits
of the Kirchhoff approximation and single scattering will occur and the numerical

results lends a great deal of weight to the simple mechanism. Aun explanation of the

double scatter results shown in later chapters will be developed on the basis of this
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argranent,

The graph also shows that the Kirchhofl approximation is more widely applicable
than the single scatter approximation; this fact will be exploited in chapter five.
Under an illuminating wavelength of 0.6330m, surface 83 is in the region of Kirch-
hoft applicability, but not single scattering, whereas surface #239 lies just inside the
single scatter limit. Bearing in mind that the single scatter boundary line was plot-
ted for normal incidence, at more oblique angles a surface might cross the boundary
and become multiply scattering — in fact, the limit of eguation (1.16) ix aclieved,
for siuface #239, at an angle of incidence of 6.0 1.0 degrees from normal (the large

uncertainty due to the errors in o and 7).

4.2 Correlation Coefficient of Two Speckle Pat-
terns

This next derivation follows, to some extent, the work pertormed by Legér and

[ k] P o5 . ey ~ H .
Perrin™] the starting point being the single scattered field, equation (1.12).

The amplitude correlation coefliciert of two such fields Ay (01,0, 05) and Ay(o1. 02. 03)

18
A A3
(A1) (4.17)
(AA7)(A2A47)
First the general correlation of the fields (A1 A3) must be found:
(A1 A3) (1.13)

AO }:3 AO FJ . . - » ; ’ N
< 1 1 2 2 /j// lll"“121—2+‘y1y1_\y)!l2+\zl<l“:3(2,(1.1.1(1‘1.2(1!“”’!/2
l;

..QQCOOOQC...00000.0......0000"
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_ Aull(?l b, I, /// WV =Vaa) (i =Y (O @ V) o sy dys
where Vi, V), and 15 are as in equations (1.13) and whete subscript 1 indicates
dependence on angles 8y, 8, and 03, one of the required arrangements, and subscript

2 on angles oy, ¢, and ¢y, the other arrangement necessary.

As mentioned in chapter two, the surfaces to e examined here may be represented
as a zero mean Gaussian process and a Gaussian correlation fuuction. Using the

result for any zero mean Gaussian process g,

(M) = =2l (1.19)
then
(('!“"x‘;‘—‘lq‘:zw _ (__01[\ +\ L =2V Vo, Oy )] (1_)0)
where o = (¢?) is the mean square surface height (the variance of ¢). and

. (11 =2 4 (i~ )’
Colaraa i) = exp | = pe; l (1.21)

is the Gaussian autecorrelation function for the surface, correlation length 7.

Yor large 7,
(1= r2) + (11— yz)?
T'Z

(-."C(Ila‘l"..’\?/lsy?) ] - (1")'2)

a parabolic approximation whicli is more generally applicable thau the case presented
here — implying that this theory may also apply to surfaces which have correlation

functions that are not Gaussian.

Putting equations (4.20 and 4.22 into cquation 4.18) gives

(Aay) = dufudols o,

-ve,)? I
oL 17" (4.23)
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V,
// Ve 1=V 22) ‘”——25'—2(1‘1 r2)? da dz,

a2V, Vy
x // ei(vylyl" yzyl)e— 1'5 (yl—-yZ)z(lyldyZ
-L

e

By applying the variable changes t; = &1 — 23, ty = y1 — Y2, $; = ¥ + 2, and
sy = y1 + y2 then dr;dr; becomes %rlsl_.dtjc and dy,dy; = %(lsy(lty, s0,

Ao, I3y Aoy Fyy 102y, vy

(A1A5> = £(20)* (4:24)
\,/EL ) sz r ZV 7 t

/ et(V‘l_k‘?) 2 (/ exp l q"yzlf + ¢ “{rl +V ‘r;)—.\ ([[_,.> (/-h‘,«

L 2]

-

VI () 11{ L
X /_ﬂLe'“y' Via) 3 (/\/zl,t\p{ A R Y s iy, +\.y2)§v} (Hy) ds,

Notice that if 2; and wy are independent, as is the case above, they will form an
orthogonal coordinate system. Within this system, any lines of constant ¢, will be
seen to be orthogonal to lines of constant s, implying that s, and t, are independent.
The same argument may be used to show ¢, and s, are independent. Note that the

variable transformation used at this stage in reference[31] was not orthogonal.

For large «, as is the case in equation (4.24),

RY 2 n A 2 b
- — i3 .
/ e~ v z/ e 4 edy (1.
-X ~-00

Using the result for « > 0,

co __1)2
'/—m e ey = \/gexp [—4—5—] (4.26)

1<
w
)

gives
(4:143) = %&e-%""‘h“’v”
y ‘[“\/j; Ve =Ve )5 g5 ;{7‘;—:2—‘/: exp [—%]
« /-V;IL eV F g, ———-———~027‘r/:;'2vq exp [—%] (4.27)
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Now substituting the simple result for the remaining integrals

X .
/ e du = 2Xsinc(aX) (1.28)
into equation (4.27) vields
y 9
(4,43) = Mg_.iﬁliﬁﬁc-%az(vz,—vsz)?sinc [—\—i—:(Vxl - V;Q)L] (4.29)

nrt [ (e Ve ) (V1))
2V, Vi, 160217, 11,

Normalising as in equation (4.17), the amplitude correlation coeflicient of two speckle
g J I

patterns is

1. 2 . s /§ 2
Ca = e 37 Wa-Valgine [YT(x/;, - VM)L] sinc [4(&;, - \s'yz)L] (1.30)

<

: (? VetV Ve Ve | (Ve + V) (1 4 Vyz)z)]
1602 J

Equation (4.30) is a general result for the two-dimensional amplitude correlation

X exp [

cocflicient; however, the quantity sought here is an intensity correlation, the ampli-
tude correlation is not relevant to this work. Assuming that the speckle amplitude

is a complex Gaussian process, the following relation holdstl:
(ALAL) = [(A143)? (4.31)

This leads to a simple relationship between the correlation coeflicient of the intensity

fluctuatoins and the amplitude correlation coefficient /8

Cr=|Cal? (4.32)

Finally, the two-diniensional intensity correlation coefficient is

Cl(oh 02, 03a (pla ¢2, ¢3) = e—az(V,l—Vq)z (4.53)
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xsine? [L2(Vy, — Vi, ) L] sinc? [2(V,, ~ V,,)L]

’ 2 72 y: r 32
2 (oVEEYS | oVEAVE (Ve Vo ) (Ve +Vy,)
X exp [857 (' v TETvr T Vo, Ve

4.2.1 Consequences of the Intensity Correlation

It can be seen from equation (4.33), that the correlation coefficient will have its
maximum when V,, = V., V,, =V, and V,, = V,, 1.e., when the two arrangements
of observation and illumination are identical. It may also be seen that there are

various factors which vary with only one of V., ¥, or V7, and that some of these

factors may be removed purely by gecmetric considerations.

The most obvious iimitation to impose upon equation (1.33) is to only allow "in
plane’ scattering in both arrangements, i.e., set 3 = ¢3 = 0, which from equations

(4-13) means that V, =V, = 0. The intensity correlation becomes:
- , , . . Y ﬁ ’ 14
Cl(ol, 02, ?1, (pl) = C-\'P [_02(‘/21 - ‘/22)2] SlllCZ [T(‘/Il e "'.1‘2 )]’

GV Ve Ve Ve .
exp [802 (2‘—/;2— + 2V§ - VoV ) (4.31)

X

It now makes sense to force the same step for the Vi's and set V) =V, = 0. Irom
equations (4.13) it can be seen that this is casily achieved, namely be setting 0, = 0,
and ¢; = ¢,. This corresponds to observation always in the specular divection. If
o1 = ¢, = 01 + 60, the intensity correlation coefficient between two speckle patterns
observed in the specular direction with illumination angles 8, and 0; + 60 is

4ro\? 5 ,
C1(0y,60) = exp | — (T) (cos 0, — cos(0y + 60)) (4.35)

Note that the correlation no longer depends on the correlation length of the surface,

T.
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A similar result might be expected if V,; = V3, = ¢, where ¢ is non-zero. From equa-
tions (4.13), this means that there will be a maximum in the correlation, (although

it is not possible to separate out the V, dependence) when

sinf; —sinf; = sin ¢; — sin @, (4.36)

This condition has heen reported by Michel®¥ for roueh surfaces, althoueh it was
| g
presented earlier in another form by Legér and Perrin®Y (cf. “memory eflect”™ in

chapter one). It is always true for the specular case.

Figures 4.5 to 4.7 examine a tew of the possibilities equation (.36 offers; each figure
consists of a correlation graph produced with equation (4.34), and an associated
grapb showing the angles 0y, 0,, ¢; and ¢;. In all cases §; and ¢, are fixed and
¢1 is the controlled parameter; knowing these three angles, @, is deteremined with

equation (4.36).

The first of the figures, figure 4.5, shows the specular case, ¢, = 0, and ¢, = ¢, the
reference being at 0; = 10 degrees; the shape of the curve is that given by equation

(4.35).

Figure 4.6 shows the case wherc 0, and 0, are fixed at 10 degrees and 0 degrees
respectively, ¢; is determined, for a particular ¢, by cquation (4.36). As may be

expected from consideration of the V;; — V,, term,

{cos 0y + cos b;) — (cos @) + cos ¢r) (4.37)

the correlation drops off at a slower rate than in the specular case shown in figure

4.5.
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Cr(0,,0;5,¢,9;)

1.0 ~
0.8L
0.6
04l
02k
0.0 ! )
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4, /°
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90/
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i
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30} a7
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Figure 4.5: Top: C((0,, 02. ¢., ¢2) plotted for the specular case with the reference at
10 degrees (6, = 6, = 10).
Botiom: ¢2 is determinied by equation (4.36), in this case ¢; = ¢;.

The last figure, figure 4.7, shows the case where the reference inage is in back-

scatter, 1.e., 8, = —0;; &, is given, for a particular ¢;, by equation (4.36). Tor
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Cr (6;,0;7.,9,,92)
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Figure 4.6: Top: C'1(0y,0,, ¢1, ¢2) plotted with the reference at 0, = 10 degrees, and
02 = 0
Bottom: ¢; is determined by satisfying equation (4.36).

o1 = 10 degrees, V,,,

cos ¥, + cos b, (4.38)
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Figure 4.7: Top: C;(8y, 02, ¢1, ¢2) plotted for the reference in back-scatter (0; = 10
degrees and 0; = —10 degrees).
Bottor: ¢; is determined by satisfying equation (1.36).

is identical to the that for the specular case, but now the variation in V,,,

cos ¢1 + cos ¢y (4“))
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._.
W]

is even slower.

These results are extremely counter intuitive. As discussed in chapter one, the high-
est degree of correlation might be expected in the specular arrangement. However,
the slower decorrelations, arising because of the slower variations in the V;, terms,
may be understood by considering the paths the light travels in each case. For the
last case presented, where the reference is in the back-scatter direction, the angles
between the various paths are small and, since it is tlie angulav difference which
counts, will therefore introduce less of an angular Jecorrelation than in the other
cases, where the angles between the paths are greater (being largest in the specular

case).

In plainer terms, the directions of incidence and observation are all very similar in
the back-scatter case. Changing these will obviously aifect the degree of similarity,
but not to a major extent. Compare that to where observation is in the specular
direction — the directions are not even similar in the first place, and any change

makes a large difference.

4.2.2 Comparison with Experimental Results

Figure 4.8 is a plot of equation (4.35) with 8, = 10 degrees, which applies to correla-
tions taken at points, compared with experimental results, which necessarily involve
spatial averaging with the equipment used. It shows that the experimental correla-

tions are a lot lower than the theory predicts. The error on each point is predicted

to be around £5%, being the statistical uncertainty on a sample of 400 speckles,

1/,/(400).
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1.0
C(e.6)
0.8
0.6

0.4

0.2

0.0 - 1 ]
L_ 0 10 20 30 40

Figure 4.8: Equation (4.35) (solid line) plotted with experimental correlations (+'s)
taken from surface #380 with incident light at 10 degrees and s-polarised and observed
speckle patterns in the specular direction — also s-polarised. The wavelength, A =
0.633m. The error on each peint is £53%.

6/°

One major difference between the theoretical analysis and the experimental approach
is that equation (4.35) produces the correlation coefficient at a point, whereas the
experimental situation necessarily deals with the correlation of an area thie size of

the camera’s CCD array.

To cope with this, it is necessary to abandon equation (4.35) and turn back to
equation (4.33). As this equation provides for scattering away from the specular
direction and out of plane scattering, it is possible to find the correiation coeflicient
at any point in space, not just at the point in the specular direction. By averaging
equation (4.33) over the area of the CCD array, a result similar to the experimental

observations should be obtained.

No attempt has been made to average equation (4.33) analytically. For the results

to be shown later, the equation was evaluated for each pixel in the CCD array
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contributing to the portion of the speckle pattern used to obtain an experimmental
result. An average of all evaluations gives the correlation coefficient to be compared

to experiment,

Figure 4.9 shows the relationship between the coordinates of a point on the CCD
array, (p,q), and the angles used in equation (4.33). This relationship is explicitly

stated as equations (-1.40).

g
%
E

Scattering Surface

Figure 4.9: Diagram showing the relationship between a point on the CCl array
and the angles 0,,0, and 03. Note that the centre of the CCD array subtends an
angle of 0, to the mean surface normal.

cosl; =

sinfls =

(4.40)

Il B~ ;:Ih

where

r = dsint 4 pcosl,
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2 = dcosl, - psinb,

R = x2+q2+_z;

The numerically averaged result is compared against experiment in figure 1.10. This
graph is identical to figure 4.8 in all other respects. It can be seen that by averaging

equation (4.33) a result very close to the experimental observation is obtained.

10 -
C(8.8,) %

0.8 |-

0.6 %

0.4

0.2 L

0.0 L
0 10

1 J 9/0
30 40
Figure 4.10: Equavion (4.33) averaged over the aiea of the CCD element (solid
line) plotted with experimental correlations (4's) taken frem surface #30 with the
rcference at 10 degrees, incidence light is s-polarised and observed speckle patterns
in the specular direction are also s-polarised. A = 0.633pm.

Having now determined that it is necessary to average equation (4.33) to gain a
similarity with experimnent, it is desirable to examine the effect this has on the

various arrangements discussed above and graphed in figures 4.5 to 4.7.

Figures 4.11 to 4.13 are the equivalents of the above mentioned graphs but now

using equation (4.33) averaged over an area around the observed direction.

As expected for the specular case, the correlation at any point is generally less

.
oF
v
L B
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Cr(61,02.91,02)
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Figure 4.11: Cy(0,,0;, ¢1,¢2) (averaged) plotted for the specular case with the ref-
erence at 10 degrees and all angles satisfying equation (4.36).

than in the unaveraged situation. For the back-scatter and fixed reference case,
the correlation coefficient is zero apart from at the point where the two angular

arrangements are the same, where it is one. The resolution of this curve is one point
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Figure 4.12: C;(0y,04, $1, @2) (averaged) plotted with the reference at 8, = 10 de-
grees, and 0; = 0. All angles satisfy equation (4.36).

every half a degree — if a finer resolution were used the spike might be expected to

have an angular width about that of a speckle.

The reason for the reduction in the correlations is that the terms in equation (4.33)
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Cr(8,.02.¢,.0;)
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Figure 4.13: C(6y,92, 01, @2) (averaged) plotted for the reference in back-scatter
(01 = 10 degrees and 6, = —10 degrees). All angles satisfy equation {1.306).

which varied slowly to give the larger correlations in the previous section, in partic-

ular V,,, vary rapidly with 6, while 0, is fixed, as is the case when averaging.

It is interesting to note that figure 4.12 and figure 4.13 are now in line with the
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intuitive argument presented in chapier one, justifying the use of the specular ar-

rangement when considering experimental correlations.

4.3 Results

Figures 4.14 and 4.15 show the experimentally observed correlation coefficients for
surface #80, plotted with the results of averaging equation (4.33) as described above,
for situations where incident and detected light are both s-polarised and p-polarised
1espectively. Although equation (4.33) does not take any polarisation effects into

account, it is obviously adequate for predicting the observed behaviour.

1.0 =20, 8,=10°
C(o.0)
0.8

2 0,=20° . 8,=30°, el=4o°ﬂ 0, =50°

0.6

0.4

0.2

0.0 0/°

0 10 20 30 40 50 60

Figure 4.14: Experimental intensity correlations for surface #80 with incident and
detected light s-polarised. Curve labels represent the (incident) angle at which the
reference was taken. Observation is in the specular direction and A = 0.633pum. The
solid curves represent the results of averaging equation (4.33) using the experimental
parameters. The symbols are experimental results.

As the measurements of the surface parameters obtained had some margin of doubt

associated with them, figure 4.14 has been regraplied in figure 4.16 with the aver-
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Figure 4.13: Experimental intensity correlations for surface #80 with incident and
detected light p-polarised. Curve labels represent the (incident) angle at which the
reference was taken. Observation is in the specular direction and A = 0.633um. The
solid curves represent the results of averaging equation (4.33) using the experimental
parameters. The symbols are experiinental results.

aged equation (4.33), for the extremes of the error ranges in the R.M.S height and

correlation length.

For the sake of completeness, the average intensity plot for surface #30 is given
in figure 4.17. Both the incident and observed light are s-polarised. As may be
expected, as the angle of incidence moves further away from being normal to the
surface, the amount of light which is specularly reflected (as opposed to any other

direction) increases.

As a matter of interest, analytical and experimental curves are uso plotted for
surface #239. This surface is predicted to show double scattering more evidently

as the angle of incidence increases. For the co-polarised situations, figures 4.18 and

4.19, theoretical curves as above are plotted.
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Figure 4.16: Equation (4.33) averaged over the area of the CCD element plotted
with experimental correlations (+’s) taken from surface #80 as per figure 4.10 The
grey area represents the region of uncertainty in thc measurement of the surface

parameters.

The agreement to the theoretical curves is not as good as it is with surface #80. This
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Figure 4.17: Averaged intensity plot for surface #80 with observation in the specular

direction. The illuminating light has wavelength 0.633;0n and it and the detected
light are s-pclarised.
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may be expected as surface #239 is bordering on the margins of being a multiply
scattering surface. It must be stressed that due to large gradients involved, the
graphs can be misleading: to see the discrepancy between the experimental and
analytical curves in its true light, the vertical distance between an experimental

point and the theoretical curve must be considered.

1.0 -2, =20%.9,=10° g 0,=20° 5 0,=30° o 6,=40° , 6, =50°
0.8 AR o
*
0.6 |- ' - [ l
0.4 S
02} of B _
‘ *
0.0 1 = b A~ ~! G /0
0 10 20 30 40 50 60

Figure 4.13: Experimental intensity correlations for surface #3239 with incident and
detected light s-polarised. Curve labels represent the (incident) angle at which the
reference was taken. Observation is in the specular direction and A = 0.633um. The
solid curves represent the results of averaging equation (4.33) using the experimental
paramneters. The symbols are experimental results.

Now that some double scattering is possible, cross-polarised correlations may be

obtained, as shown in figures 4.20 and 4.21.

The cross-polarised component is very much less intense than the co-polarised one, so
much so that KimP! reported that no depolarisation was evident in scattering from
this surface. For these results, long exposure times were required to produce speckle

images with pixel values in the range specified in chapter three. The exposure time
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Figure 4,19: Experimental intensity correlations for surface #239 with incident and
detected light p-polarised. Curve labels represent the (incident) angle at which the
reference was taken. Observation is in the specular direction and A = 0.633zm. The
solid curves represent the results of averaging equation (4.33) using the experimental
parameters. The symbols are experimental results.

was greater than 30 seconds for most of the data shown, coming close to 2 minutes
for the higher angles. Although the large exposure times allow large amounts of
ambieut light to enter the camera, this is subtracted when the speckle images are
processed. Further problems may be introduced experimental apparatus, with small

amounts of detected cross polarised light, as discussed in chapter three.

One notable feature present in the cross-polarised curves is the existence of extra
humps in the correlation at certain angles away from the main peak. The shapes of

these curves are explained in chapter six.

The behaviour of the extra correlation humps in figure 4.20 is interesting, each

individual curve has peaks at around three degrees either side of the main peak, but

the value to which these rise varies, becoming lower with higher reference angles.

.0QOQOQ.Q.OOOO.OO’.Q.OQ{OO.QQ...Q’O.A



4.3. RESULTS 127

1.0
C(6.9,)
0.8
0.6

04

o

0.2

| - J

0 10 20 30 40 50 60

Figure 4.20: Experimental intensity correlations for surface #239 with incident light
s-polarised and detected light p-polarised. Curve labels represent the (incident)
angle at which the reference was taken. Observation is in the specular direction and

A = 0.633m.

0.0 6/°

Figure 4.21 shows similar behaviour, but with the extra correlation humps being
more evident at the larger reference angles. At the lower angles, however, the
correlation coefficients seem to fluctuate randomly — no clearer picture is given if

the curves are examined separately.

Figure 4.22 and figure 4.23 show averaged intensity plots for surface #239, for the
case of observation in the specular direction, for s-polarised light incident and s- and
p- polarised light detected respectively. The relative scaling between these graphs
has not been preserved, the s-polarised experiment requiring a neutral density filter

in the system to attenuate the amount of light incident on the surface.

As can be seen in the figures, as the angle of incidence moves away from normal, the

amount of co-polarised light scattered into the specular direction increases. Con-
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Figurc 4.21: Experimental intensity correlations for surface #239 with incident light
p-polarised and detected light s-polarised. Curve labels represent the (incident)
angle at which the reference was taken. Observation is in the specular direction and

A= 0633/1771

sequently, the amount of cross-polarised light (already small) decreases, heuce the
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Figure 4.22: Averaged intensity plot for surface #239 with observation in the specu-
lar direction. The illuminating light has wavelength 0.633m and it and the detected
light are s-polarised.
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Figure 4.23: Averaged intensity plot for surface #239 with observation in the spec-
ular direction. The illuminating light has wavelength 0.633:n and is s-polarised.
The detected light is p-polarised.

long exposure tiines needed to obtain the speckle images.

Since there are no olvious side lobes in figure 4.22 or figure 4.23, it seems that
the correlation of speckle patterns is a much more sensitive probe of the multiple
scattering regime than is the average intensity. This final piece of evidence offered
up by scattered light from surface #239 (that the surface only shows slight evidence
of double scattering), lends a great deal of support to the simple model near the

start of this chapter which predicted such behaviour on the basis of equation (4.16).
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Chapter 5

Double Scatter Simulation

5.1 Theory

The Kirchhoff approximation will be used to obtain an expression for the double scat-
ter component of the scattered light in the far field by applying it to the Helmholtz-
Kirchhoff integral. This method was employed by Brucel® for one-dimensional sur-

faces and it seemed the most lixely candidate for an extension into two dimensions.

Light incident on the surface is treated as being scattered into two states — one
in which the light leaves the surface, and the other in which the light strikes the
surface again at a different point. Of the light which impinges on the surface again,
some will scatter and leave the surface and soine will strike it a third time. Light
continues to be scattered from the surface until it has ali escaped (or in the case of

a non-perfect conductor, been absorbed).

Bruce found thai when considering perfectly conducting surfaces for which the

Kirchhoff approximation can be applied, such as those discussed here, over 97%

131
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of thie incident light had left the surface after the second contact®?; the amount of

triple (and higher) scattered light gave a negligible contribution to the final scattered

field.

Only the single and double scatter components of the scattered field will be dealt
with in the present study. The small power loss evidenced with this approach was
deemed an acceptable price for extending the calculation to deal with two dimeu-

sional surfaces.

5.1.1 The Single Scatter Contribution

The equation to be used for the single scatter contribution is equation (1.10). derived
in the previous chapter. It represents the contribution to the electric field due to light
which only interacts with the surface once. Obviously, for surfaces which possess
steep sided features, light will scatter from more than one point before it finally

escapes.

5.1.2 The Double Scatter Contribution

Following a procedure similar to that used to gain the single scatter component, an
expression will be derived for the double scatter component of the scattered light in

the far field.

The nomenclature to be used is shown n figure 5.1, the subscripts 1 and 2 represent

arbitrary realisations of functions at points 1 and 2, e.g., n; is the surface normal

at point 1, and is a function of the coordinates of that point,.

O0.000.QOC000000000000000._..00..
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Figure 5.1: Geometry for the double scatter component of the scattered field.

Given an incident field on a surface, Ey, the field after scattering once can be written,

from equation (2.43), as

1 Ay dE, . .
E=——// J AR RN LIS 5.1
*T 4rn s, ! dn, -1 dn, ! (5.1)

and the double scattered component of the scattered field can be written as

1 rr 013 JE,,
Ey=— / (B 2B S5y, 5.9
3= ) Js, B om Y3 on, (5.2)
where, as previously, ¥ 1s the free space Green’s function,
elks-Rs
S 5.3
Yis R (5.3)

The fields at the surface and their normal derivatives in equation (5.1 and equation

5.2), can be given by the Kirchhoff approximation, such that

E, = (1+TR1)I
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1‘:23 = (1 + R2)];2

JE\, d b, .
ony, (t- Rl)()n; (5-1)
ALy, JF,

on, ( R2)611-2

where R and R; are the Iresnel reflection coefficients of the surface at points 1 and

2.

Combining equations (5.1, 5.2 and 5.4) leads to an expression for the double scat-

tered field depending on the incident field,

1\? s 12 JE,
= {— R -1+ ROE — (1 =Ry ——
Es (47r) .//32 //s,(l +Ra) dny (1 +R)E In, ( il ”()nl

dyry 2 ) duryy O = e - o=
H1 = R)vas [(1 + Ry Eio——=— - (1 = R)) === dS1dS,; (5.5)
on,on, dn; dn,
Taking the incident ficld as a plane wave of amplitude Ey, as before
E1 = Eo('ikl'r} (—)G)
and the normal derivaiive ai the surface at point 1 becomes
01‘4 . ik,
. = 1Eon; ke 5.7
Jn; e (5:7)
Also, ¢12 may be written from equation (5.3) as
(:‘koR;
Y = 5.5
Rz ( k)

and by taking the double scattered component of light out to the far field and so

expressing Rj as

Ry=Ry—-r; (5.9)

o g _ P > T P . P . N ] - oo . . : . . . . . e
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then (observing that ky and k3 are identical),

elkoRo K,
¢23=( To )"_' (5.10)
and
a¢’23 R . (J—kORO ~ik3.r, [=4
Ty —iny.k; RO—- e (5.11)

The remaining terms of equation (5.5) are derived by expanding equation (3.8) mto

cartesian coordinates (l.c., I, = V/(.Tg —a1)? + (g2 — y1)? + (22 — 51)?) and applying

the operator (2.13). Their fiual forms are

. .
01}‘1‘ = (C—iD)ypp
Dy _ IV 519
o (= + 1B} (5.12)
Ay [112.111 / 1 , ) _ ]
_— = | = =l 2AD - 3AC Pl
allll‘)llz }'{2 \Rz II\U + ! '1 3 1C+ B[ 7 Uy
where
A = 112.1}_2.
R,
B = 112.k2
. nl.Rz Ce oy
= e (5.13)
D = lll.k;z

Thus, for a given arrangement of illumination and observation, and with a known
surface profile, only the retlection coeflicients remain to be determined in equation
(5.5). With a perfectly conducting surface, the reflection coeflicients can be set to

+1 or --1 for p-polarised or s-polarised incident light respectively: this is due to a

[39].

perfect conductor being a perfect reflector

For the one dimensional case, where
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no change in polarisativit occurs upon scattering, this is all that is required; but
for a two dimensional surface — where the polarisation can change upon scattering
out of the incident plane — changes in the reflection coefficients must be taken into

account.

5.1.3 Including Polarisation

Following Mitzuerl™® and Beckmannl'®, the electric field £ can be split into two
orthogonal componcuts, one which is s-polarised E7, and the other p-polarised
E*. The scattering geometry is shown in figure 5.2. The vectors e~ and et arce
unit vectors representing the s-polarised and p-polarised electric vector alignments
respectively. X,y and z are orthogonal unit vectors describing the coordinate system
used. The scattered field can be expressed in terms of thie incident field as
E-aEE e
IO I I I‘IT EY .

wuere ET and EF is the incident field, E7 and EF the scattered field, and the I's

s

are the reflection coeflicients; subscript || indicates the component of the reflection
coeflicient which does not change polarisation and L indicates the component of
the reflection coefficient which maps one polarisation state to the other. These
reflection coefficients are effectively the Fresuel reflection coefficients (R~ and R*)
transformed from the local scattering plane into the world frame. Note that in the
world {rame the s-polarised and p-polarised electric vectors lie perpendicular and
parallel to the plane of incidence — once scattering is considered from a local point
of view this is no longer irue, hence the coordinate transtorms. These new reflection

coefficients are derived by Mitzner[*¥;

I = R7cospcos By + R* sin B, sin B,

.
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k. | 2 ean Surface Plane
v

Figure 5.2: Geometry for polarisation showing the orientation of the electric field
coordinatz systems within the world frame.

I‘IT = R sinf;sin B, + RY cos j3; cos 3,

[T = =R sinficos B, + R cos i sin 3, (5.

WY
—
o
—

[T = —RcosfisinfB, + R sin §; cos f3,

Pi and f§, are the angles between the local scattering plane and the incident and
scattered polarisation coordinai e systems respectively, as shown in figure 5.3, and
can be defined as

cos By =t .e] (5.10)
or

sinfly = ¢ .e; (5.17)
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n

Figure 5.3: Relative orientation of the electric field coordinate systems with respect
to the local scattering plane.

for x =1, s, where
n x k,
7 n x k|

is a unit vector along the interscction of the local scattering plane with the wave

(5.13)

fronts, as shown (aloug with qx) in figure 5.4, and e is the direction of the s-

polarised component of the electric field. Expressed in world coordinates,

eC =y (5.19)
and
- -(ksy)x+(kax)y 3)
= e 5.20
¢ *V‘l hd (k,vZ) ( ) )

The process of keeping track of the polarisation can be thought o+ as first a trans-
formation of the (e],e}) system into one which lies in the (t;, q;) plane. This is
followed by scattering the light according to equation (5.1) or (5.2). Finally the co-
ordinate system (which now lies in the (t,, 4,) plane) is transformed to the (e],e})

arrangement. The overall effect is a chauge in polarisation.

A limitation must now be imposed: the Fresnel rcflection coeflicients only apply to

a specnlar reflection fromn « flat plane, and so the above procedure will not work if

GGQQOOOQOOQOOQ_.Q@OOOQOO.QOOQQCOO
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Incident Wave
Front

Local Scattering
Plane

Local Plane of Incidence

Figure 5.4: Detail of the relationship between the electeic field coordinate system
and the local scattering plane.

ki, k, and n do not lie within the same plane. When they do, t; = t, = t, and the
polarisation is correct. Having imposed this limitation, the polarisation change no
longer depends cxplicitly on the surface normal, and t may be rewritten in terms of

the incident and scattered wave vectors:

. k,‘ X kg_
Tk x k| 5.

A model is now needed to cope with light scattered out of the local plane of inci-

dence (a diffraction effect supported by the Kirchihoff method used). 11 any light is
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scattered in some direction ks, from a scattering element, with incident light in the
direction ki, then the existence of a virtual plane, oriented such that the scattered
light is specularly reflected, may be considered. The polarisation of the light is then
given, as above, by applyiug the reflection coeflicients on this plane with t, and t, as
in equation (5.21). The actual orientation of the virtual plane is never needed as k;
and k, are already determined. This approximation to whatever polarisation change
is occurring is justified since the surfaces to be studied here must conform to the
Kitchhoft approximation, i.e., most of the light scattered from any point will be as
if from a plane mirror. A qualitative argument successfully explaining polarisation

changes in enhanced back-scatter has been based on a similar assumptionttV,

Clearly it is neccssary, from equation (3.11), to work out both the s- and p-polarised
components of F; (cf. equation (5.1)), before a single realisation of K3 (equation

(5.2)), be it s- or p-polarised, can be determined.

5.2 Implementation

Given that the single and double scatter components of the electric field are now

realised, the total scattered field is simply the sum of the two components.

The angular intensity correlation, the quantity sought here, depends on two realisa-
tions of the intensity, I} = I(ky,ky) and I, = I{k],kj), taken {rom N realisations

of the surface, and is obtained using equation (2.15) from chapter two:
> hila 3 11; Iy
N N

{5 () (5 - ()

Ciky kg, ki, k) =

O.‘.OOGOOO._.OAQO.QOQ.._O”Q.OOO.0:_0000“




5.2. IMPLEMENTATION 141

The total electric field can be expressed as an intensity (defined as the energy . rossing
a unit area in unit time) by:
C e .
I=—FEF (5.23)
4n
Examining equation {5.22), it can be seen that any constant factors in I, and hence
(from equation (5.23)) in the electric field £, may be discarded when only considering
the correlation. Note that this only applies to factors common to both the single
and double scatter components of £ and I — their relative scaling must not be
disturbed. This removal of all terms constant with respect to angle means, especially,

that the corvelation does not depend upon Ry, a term which (as it is the position of

observation in the far field) tended towards infinity.

5.2.1 Discretisation for Computer Modeling

The integration over the suiface in equations (4.4) and (5.5) shall be performed
simply by multiplying the value calculated at the centre of a unit by the arca of that
unit, as shown in figure 5.5. This makes discretisation of the equations simple; it is
achieved merely by changing the integral signs to sums over the @ and y directions
and replacing dS with AS..,, the area of the unit. Obviously this is a very simplistic
approximation to the actual integral — a more accurate calculation might extend

Simpson’s rule into two-dimensions.

It is generally deemned necessary, while considering discretisation of equation (5.5)
and all associated parts, that the phase terms present, namely e~ 01 gikarz g
e'*of2 nust be viewed with respect to their variation. In order to maintain a realistic

idca of this phase over a discretised surface, its variation must be much smaller than
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f(x)

ol

ASy

X

Figure 5.5: Numerical integration performed by taking the mid-point of two reali-
sations of a function and multiplying it by their separation.
21 between two consecutive surface points. Taking just the kg Rz term, as this varies

fastest, the condition can be written as

where A indicates the change over consecutive points. Replacing ko by 27/A. the
condition becomes

AR, << A (5.25)

The largest change in i2, will be of the order of the distance between poinis on
the discretised surface, so to track the phase reliably across a discretised surface
there must be many sample points per wavelength. There is, however, a problem
with this approach: the discretised surface will have so many points on it that

the calculation would be unrealistically slow; also, the fast shading algorithm (see

below), would require so much memory that it would not be possible to implement
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it. The integration will therefore be performed with a grid separation controlled by
the correlation length of the gradient of the surface, this being the ¢! half width of

the correlation functior of the gradient (from equation (2.30)):

Cs-'sl(t) = (1 — t—z) e

U

)
2= (5.26)
When this is equal to ¢!, the value of t = 75, the correlation length of the gradients

(found by Newton-Raphson iteration), is approximately given by
T = 0511047 (5.27)

i.e., for a surface with a correlation length 7 = 4.31 A, surface points will be separated
by 4.31A%0.51104 = 2.20A. If 2048 points are available, then the surface side should
be /2048 x (2.204)2 = 99.74).

Surface segments spaced by this distance will still have similar gradients, and hence
each segment may be considered to be locally flat. The distances between points on
a surface will now constitute a random distribution {cf. Monte Carlo method). It
can be seen from figuie 5.6 that the phase spread over an ensemble average of 100
surfaces is relatively uniform, implying that it does not need to be tracked on a finer
scale. The randomness of the surface points is enhanced by adding a small random
offset to each z and y coordinate (which is linear and up to a maximum of A/10)
and interpolating to find the correct z coordinate on the surface; i.e., the surface
realisations are not confined to a fixed grid which may impose its own stiucture onto

any results.

To perform the integration, a sum over flat surface segments must be conducted (a

requirement of the Kirchhoff approximation). Somehow, these flat facets musi be
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Figure 5.6: The distribution of the phase differences between two points binned 50
times over the wavelengih, on a 100 x 100 wavelength surface consisting of 2013
points, with parameters o = 1.42)X and 7 = 4.31), over an ensemble average of 100
surfaces. Point to point shading has been taken into account.

obtained from the data available, namely a square grid of surface heights (given the
nature of the surface generation technique which relies on fast I'ourier transforms -—
see below). In actual {act, the grid must be disturbed to create a random distribution

of points, but for the purposes of this explanation a square grid will be considered.

Since it is unlikely that four independent points will all lie in a flat plane, each
‘square’ of the surface (defined by the four corner points), must be split into two
triangles, both of which are uniquely defined planes, as shown in figure 5.7. This

complicates the summation procedure slightly as it is now necessary to cater for the

two sub-triangles within each unit.
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Figure 5.7: A discretis2d two-dimensicnal surface — each facet is a flat plane.
The AS;, required for a triangular unit can be defined as

AxAy .
AS;, = o (5.28)

the area of a surface facet with a surface normal n (n; is the component which lies
along the z direction) on a triangular base of area AxAy/2. The positions of the
mid-point of each facet (see figure 5.8) are given by averaging the positions of the

three corners, for facet A the mid-point is

1

A, = ﬂ;_%xﬂi; =P, +§A$
2

P] +P2 +P3 -
—_— _ - — [y
A, =Retlath —pyoay (5.29)
A — P1.+P-g.+P3E
LI 3
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Figure 5.8: Geometry for calculating the positions ol surface facets.

and for facet B

9
BI — P‘x+P§;[+P‘.L = 1)11 + —:;-.Al
p “ ’1 1 ,
B, = _‘ﬂfgs_'f__‘a =P, + S-Ay (5.30)
Pl +P R
B. =58 : s

where the points Py, P, P5 and Py ave four realisations at the corners of the square
unit. The surface normal for each facet can be derived by taking the vector cross

product of two sides of a facet:

na = PP x PPy = —Ay(Ps, — Pp)x + Ax(Py, = Py,)y + AzAyz (5.31)

ng =R x BP =Ay(P, — P )x— Ax(B, — Py, )y + AvAyz  (5.32)

Of course, these vectors still need to be normalised by dividing each component by

[n].
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As mentioned above, the randomness of the distribution of peints on the surface
needs to be increased, this is achieved by shifting the corners of each square by a
small random amount. The surface normal may still be defined by a cross product

of two vectors describing the sides,

Ny =aygxby =PP xPP

H

ng ag xbg = PPy x PP, (5.33)

although the solution is not so trivial as Lefore, it is nevertheless a simple caleulation.

The most significant complication introduced by randomising the surface nodes is
that the surface area S of cach facet needs explicit calculation (see figure 5.9), uot
particularly diflicult in itself, but meaning one more quantity to keep track of. The

area of a triangle described by two vectors joined at their bases is,

1 1
dS = Sbe = 50la—ab] (5.3:1)
where
a.b o
a = E (5.35))

and a and b are two vectors describing the sides of the facet as in equation (5.33),
assigned such that b > «. Note that ¢ may be calculated via the dot product of a
and the normal to b, but this method requires a normalisation and hence a square

root. Bearing in mind that calculation speed is of the essence, the above method

was chosen as it avoids the slow square root and uses a number of faster operations.

By this point in the development of the theory, it is not practical to write the
calculations as a single equation or even just a few equations. However, this is of no

concern when considering that it will be implemented on a computer — in fact it is

an advantage to have expressed the theory as many small parts.
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Figure 5.9: Geometry for calculation of area between two vectors.

5.2.2 Calculating Shaded Areas

So far, no allowance has been made for the effect the surface height varation has in
terms of casting shadows; ali points on the surface have been assumed illuminated
at all times. Clearly, for steep sided features of the surface, especially at high (away
from normal) angles of incidence, there are going to be portions of the surface which
are in shadow. The inverse of this aiso applies: points on the surface which canuot
be seen trom the observation direction cannot directly contribute to the scatteved

light in that direction.

In the double scatter case, the effect of point to point shading must also be taken
into account. Light cannot reach a point on one side of a hill from a point on the
other side — this must be accounted for. Note that if the surface is discretised
into N points, then the point to point calculation will have to be performed from 1
point to NV points N times, i.e., N? peint to point calculations. It is vital that this
calculation is computationally as fast as possible. A direct ray trace, possibly the
most obvious method for determining shaded regions, is too slow to be practical.

Fortunately, it is not the only solution available.
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Considering, for now, a one dimensional surface, figure 5.10 shows the shaded regious

of that surface when light is incident on it. The vector s is defined as that which lies

Incident Light

Shaded Illuminated

Figure 5.10: Shaded regions of a one-ditnensional surface due to columnated incident
light.

in the direction of the line joining the last illuminated point with the current point.
Starting at the left side of the discretised surface, as each point is stepped through,
s is redefined. If a point lies in an illuninated area, then s will simply be the vector
joining two consecutive points (cf. s;). If, on the other hand, the point lies in a
shaded region, then s will be the vector joining the start of that shaded region with
the current point (cf. s;). To determine if the current point is illuminated or shaded,
the dot product of s and the normal to the wave vector of the illuminating light, m

(as shown in figure 5.10), is taken, If
s.am > 0 (5.36)

then the current point is illuminated and the tail of s is redefined as this point,
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othetwise the point is shaded and the tail of s is left alone.

For illumination to the right of the surface, the direction the surface is processed in
must be reversed, i.e., stepping starts at tii  .ght hand side and the definition of m
15 such that it still points ‘up’. To calculate observed points, ‘illumination’ cax be
considared to be from the observation direction — ‘shaded’ regions are then areas
which are nct observable, and ‘illuminated’ regions, areas which are. Note that this

algorithm only touches upon each surface point once.

As long as the observed direction is in the plane of incidence, a two-dimensional
surface can be thought of (for the purposes of the above shadow calculations) as

many one-dirnensional surfaces lying side by side.

A similar method to that above can be used 1or poiat to poiut shadow calculations
(sec figure 5.11), the only difference being that the wave vector, and hence it's
normal m, are no longer constant. However, the point to point calculation cannot

be extended to that for a two-dimensional surface so trivially.

The solution to the problem of calculating point to point shadows is to work with a
cylindrical systemu -— cartesian vectors are no longer the optimuin tool. Fortunately,
the condition s.m > 0 can be rewritten in term: of gradients. For this case: as you
step out along the surface, if the gradient of the line joining the current point to
the starting pui.nt is greater than the maximum gradient so far, then the point is
illuminated. The gradient concept can easily be extended into the two-dimensional

case, as no spevaication of direction has been made.

The final problem of determining which order to process the poiuts on the surface
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Unprocessed Shaded lluminated |

Figure 5.11: Shaded regions of a one-dimensional surface due to point to point
scaltering,.

is still not simple — the most computationally effective being to spiral out from
the ‘source’ point and calculating, only once for each point, whether that point is
shaded or not. The difficulty lies in working out which points lie along the line of
sight between the current point and the source position. Here, the most sensible
course of action is to precalculate the point to point dependencies; i.e., for each
point, create a list of points which will be directly affected by a change in it. Figure
5.12 shows the concept schematically. These lists can be created in such a way as to
form a template which car. be overlayed on the surface at any positicn. The template
must be twice the arca of the surface; thus ensuring that the centre of the template
can be positioned at one corner of the surface while the whole surface still remains
under its influence, even though only one quarter of it is used. If the template were
the same size as the surface, then only when the template is positioned above the

surface centre would the whole surface be processed.

All that need be done now is to spiral out, at cach poiut working out the gradient
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31211
41516
Order points processed in (spiral out) B

£ 123456789 .. 2324 .. 47
g 9 F i i i9 i 4 78
o 2323 47 79
& : 24 : 118
A 47 119
P47 165
: 166
167
220
221
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223

Figure 5.12: Creation of a template for determining point to point shadows ou a
two-dimensinnal surface. The dependencies are created by tracing a straight line
hetween a point and the centre, insertiug a reference to that point into the list of all
points the line passes through. Point 47 has been added to the list of every point
that has an effec’, on it; a completed list for point 47 is also shown,

of the slope from the centre to the curvent point. This is compared with the value
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of the ‘maximum’ gradient associated with that point; if it is the new maximum
the point is marked as illuminated, otherwise as shaded. The calculated gradient
must still replace the maximum gradient of each point in the dependency list if it is

greater, regardless of whether the original point was illuminated or not.

This last statement may seem unreasonable: how can a point which is not ilhuni-
nated cast a shadow? The problem here is that each ‘point’ actually has a finite
size — the whole defined as shaded or illuminated by the state of the centre of that
point. It is possible though, that one corner of the poiut might be illuminated, the
centre beiug shaded; this could cast a shadow, which if ighored. would propagate an
error though to all dependencies. The question of whether thie whole point should
be set as shiaded or illuminated is unresolved: a better model could give cach point
a more analogue value depending on the percentage of its area shaded, However, it
should be noted thai as the surface varies sinoothly, only those points on a boundary
between light and dark will not be totally one state or the other (a siall percentage
of the total number of points). This implices that for a point which is on the bound-
ary, over half of its arca will be of the same state as its centre. Finally. if the surface
has been discretised to a suflicient degree, adjacent points will not have a noticeably
different cffect on the light which scatters from them, therefore some averaging of

the shaded/illuminated state will occur.

The speed of this process can be improved by watching for when the gradient and
distance from the initial position take the light above the surface — at this point,

all dependents in the point’s list can be marked as shaded.

Figure 5.13 shows a two-dimensional surface profile (left iinage) and the effect of the
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Normally Suiface Surface
Hluminated Hluminated IUuminated
Surface from Right from Point
at Centre
I
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e

Figure 5.13: Representations of & computationally generated surface profile showing

the results of the shading techniques. The surface height at a point is given by the
brightness (light is higli). The black regions indicate shaded areas.

two shading techniques, one of illumination from a certain angle (middle immage),
and the other of point to point shading (right image). The dark line down the right
hand sidc of the middle image is present because the images actually represent point
heights, but the shading calculations work on the connections between them; ie. a

surface with a side of 32 points will have 31 facets along it.

Extending the two-dimensional shadow calculations from a rectangular grid into
one in which each rectangle is subdivided into two triangles is fairly simple. For
the illumination and observation calculations, each ‘row’ of the surface can still
be considered, except now a row has twice as many points. The point to point
calculation requires slightly more thought, two templates are required, one for cach

of the two possible ‘source’ triangles. More care must aiso be taken when spiraling

out — the same process outlined above can be used, but the order in which the sub-
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triangles are processed must be intelligently defined: the one closer to the centre

first.

The application of the methods described above is net limited to calculating shaded
regions for numerical calculations. The author believes that these methods are the

fastest possible for determining lines of sight, with potential use in various areas.

5.2.3 Numerical Random Surfaces

A numerical random surface with a standard height deviation of o and correlation
length 7 can be created simply by convolving Gaussian white noise. of standard
deviation o. with a Gaussian correlation function, of 1/e half width 7. This is
shown pictorially in figure 5.14. Computationally, the convoiution is performed
by a multiplication in Fourier space. Zero mean Gaussian white noise of standard
deviation o has (from Parseval’s theorem) a Fourier transform which is also zero
mean Gaussian white noise of standard deviation o. The Fourier irausform of the
correlation function is obtained by applying a fast Fourier transform algorithm to
an array containing a Gaussian envelope function with a 1/e half width of 7. This
transform can be remembered and need only be calculated once for each execution

of the program, no matter how many surfaces may need to be gencrated.

The actual process of creating a random surface consists of obtaining a random
number from a Gaussianly distributed sett™, multiplying this number by the rele-
vant entry in the correlation transform array and storing it in a result array. After

every clement of the result array has been allocated, an inverse fast Fourier trans-

form is performed upon it. The final result is an array of Gaussianly distributed
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Figure 5.14: Convolution of Gaussian white noise with a Gaussian correlation func-
ticn. ‘I'he method is egnally valid for two-dimensional surface creatioi.
numbers with a standard deviation o and a Gaussian autocorrelation function with

correlation leugth 7.

5.3 Results

5.3.1 Single Scatter Component of Sinialation

Since the single scatter component and the analytical equation derived in the previ-
ous chapter both have a comrmon origin, some degree of similarity between the two
should be expected. Figure 5.15 shows the analytical and computational correla-
tions obtained for the specular geometry with the reference at eight degrees. The
simulation was run for a surface with parameters identical to those of surface #80,

consisting of 2048 points and with a side length of 730A. A square region with 24

points per side was illuminated (shading was incorporated) and the cnsemble aver-
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age consisted of 600 surfaces. The analytical curve was plotted using the expression

for specular observation and with no averaging, equation (4.33) in chapter four.
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Figure 5.15: Analytical and single scatter computational intensity correlations for

observation in the specular direction with the reference at 8 degrees. o = 2.27um,
T = 20.7pum and A = 0.633um. Both curves have data points every half degree.

The differences in the two curves may be attributed to two factors; the approxima-
tions made in the analytical derivation and the non-infinite, discretised surface in
the simulation. The relatively small number of sampling poiuts per surface might
be expected to reduce the computational correlations, but as a reduction is not
evident, the arguments presented previously in favour of large distances between
surface points appear to be justifiel. However, although this appears unlikely, there
may still be a netting off of two opposite effects, one increasing the correlation and
one decreasing it, which could mask an error introduced by any particular approxi-

mation. Shadowing is not likely to have much effect for such a low sloped surface.
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Figure 5.16 shows the cffect of including polarisation tracking in the simulation, the
curves show the correlations of the polarisation components. The s-polarised curve
coincides with the the caiculation run with no polarisation tracking. In all cases the

incident light was s-polarised, all simulation details are as above.

1.0 ;
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Figure 5.16: Single scatter inteusity correlations with polarisation for observation
in the specular direction with the reference at 8 degrees. The intensity of the p-
polarised component was about 10* times smaller than the s-polarised one. o =
2.27pm, T = 20.Tum and A = 0.633um.

An intcresting point to note here is that the simulation predicts a smail amount of
depolarisation in the specular direction. It is generally accepted that single scatter
calculations do not predict depolarisation in this direction, and any cross polarised
compoient noticed in experimental situations has been attributed to some degree

of multiple scattering!l.

The polarisation change shown here is an artifact of equation (4.10) and the method
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chosen to control polarisation, the reflection coefficients. The cross-polarising reflec-
tion coefficient becomes zero for any specular scattering and on the face of things
this will mean no depolarisation. However, when considering that a small amount
of light may be scattered into the specular direction from slightly tilted surface
facets, the last term of equation (4.10), not multiplied by the reflection coeflicient,

is non-zero, and makes a contribution to the cross-polarised light.

This result requires a more in depth study of polarisation changes froni scattering ele-
ments. However, since the predicted depolarisation is very small (the cross-polarised
component is about four orders of magnitude sinaller than the co-polarised one), it
will not be noticed by the experimental equipment, and may be ignored for the pur-
poses of this work. It will inake an insignificant contribution to any cross-polarised
component due to multiple scattering. It may be that the result is merely an error,
due to the specular approximation used to calculate the reflection coefficients or
the finite size of the surface facets. Alternatively, it inay be that the technique to
control polarisation using reflection coefficients can not be applied to light whicii is
not locally specularly reflected, or that the presumption that no depolarisation is
present in the specular component of light scattered from a single scattering rough

surface is invalid. Future work might like to consider this,

5.3.2 Experimental Results from a Multiply Scattering Sur
face

Figures 5.17, 5.18, 5.20 and 5.21 show, for incident-observed polarisation states of

s-s, p-P, s-p and p-s respectively, experimental correlation results for surface #83.

Within each figure, curves are plotted for reference angles of 2, 10, 20, 30, 40 and




160 CHAPTER 5. DOUBLE SCATTER SIMULATION

50 degrees.
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Figure 5.17: Experimental intensity correlations for surface #83 with incident and
detected light s-polarised. Curve labels represent the (incident) angle at which the
reference was taken. Olservation is in the specular direction and A = 0.633um.
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Figure 5.18: Experimental intensity correlations for surface #83 with incident and
detected light p-polarised. Curve labels represent the (incident) angle at which the
reference was taken. Observation is in the specular direction and A = 0.633um.
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As can be seen in figure 5.17 and figure 5.18 — data from co-polarised arrangements
— the narrowing of correlations at higher angles, or rather the widening at lower
angles, observed in the single scattering case (cf. chapter four) is less evident. As
expected then, this surface does not conformn to the analytical theory in chapter
four, Figure 5.19 emphasises the failure by showing the results of the analytical

expression compared to the results in figure 5.17.
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Figure 5.19: Experimental data as in figure 5.17 — surface #83, incident and de-
tected light s-polarised — with averaged analytical curves (dashed lines) as described
in chapter four overlayed.

Figure 5.20 and 5.21 are more interesting; these are plots in the cross-polarised case,
showing the double scatter component of the scattered field. They are similar to
the co-polarised graphs, figure 5.17 and figure 5.18, in as much as the widths of
the peaks are the same and uniform, but at the lower angles an extra bump in
the correlation coeflicients has appeared at the sides. When considering that the
experimental equipment correlates two separate speckle patterns (not just the point

intensities, as do the calculations), this suprising result means the speckle produced
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by one angular arrangement, in the double scattering case, is remarkably similar to
that produced by another totally different arrangement. Chapter six discusses why

this could be so.
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Figure 5.20: Experimental intensity correlations for surface #383 with incident light
s-polarised and detected light p-polarised. Curve labels represent the (incident)
angle at which the refcrence was taken. Observation is in the specular direction and

A= 0.633um.

To show the extent of the double scatter extra correlation peak more clearly, a surface
plot of the corrclation coefficients is given, in figare 5.22, over all combinations of the
two correlated angular arrangements, for surface #33, in the case where s-polarised
light is incident and p-polarised light detected. Although a peak is evident either
side of the main 01 = 0, ridge, this can be considered as simply a repetition of data
— everything on one side of the ridge should be visible on the other. The peak of the
extra correlation occurs when the reference image is at two degrees and correlated
with one at eight and a half, or vice versa due to the symmetry. The data was taken

with an eight bit Pulnix CCD camera which was used before the low noise Princeton
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Figure 5.21: Experimental inteusity correlations for surface #83 with incident light
p-polarised and detected light s-polarised. Curve labels represent the (incident)
angle at which the reference was taken. Observation is iu the specular direction and

A =0633um.

Instruments camera was availabie,

To help compare these results to the discussion of intensity results previously re-
ported with this surfacel!!], figure 5.23 shows the intensity plot for surface #83,
where as usual, the detector is in the specular direction and the illuminating light
has a wavelength of 0.633;0n. The figure shows two graphs for the average inten-
sity, one with s-polarised light detected, the other p-polarised. Both curves were

obtained with s-polarised light incident.

As with previous average intensity results presented, in the co-polarised situation,
the light level detected tends to increase as the angle of incidence nioves away from
normal. The cross polarised case, L- wever, shows some interesting behaviour; the

intensity drops and then rises back up again before tailing off as with surface #239.
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Figure 5.22: Surface plot of correlation coefficients for surface #33 with inc¢ lent
light s-polarised and observed speckle patterns p-polarised.

The rise in intensity is one of the ‘side lobes’ noticed by Mendez and O’Dounelllty
when scattering from this surface, occurring here at a larger angle than they observed
due to the geometrical arrangement used. No back-scatter peak is seen at normal
incidence because the equipment was not set un to observe in that direciion — the

detector’s view of the surface is obstructed by a mirror used in the beam delivery.

Figure 5.24 shows a close-up of the p-polarised comiponent of figure 5.23. Two peaks
are clearly evident in the intensity nrofile. The first peak is the side-lobe previonsly
mentioned. The second peak, not observed in the work referenced abo:e — most

likely because of the geometrical arrangeient used, is discussed in chapter six. It is

shown to be a secoud order effect (where the back-scatier peak is zeroth order and
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Figure 5.23: Average intensity plot for surtace #33 with observation in the specular
direction and with s-polarised (squares) and p-polarised light (circles) detected. The
illuminating wavelength is 0.633um and s-polarised.

the side-lobe first order).

., 0.010
£ °
0

g - ‘.o ooo....° °

o ]

< °

> .. ®e0eset’

= 0.005 +

& e

Q

£ °®

0_000[ 1 1 1 2 9/°

0 5 10 15 20

Figure 5.24: Average intensity plot for surface #83. This graph shows an expanded
view of the p-polarised component of figure 5.23
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5.3.3 Computational Results

Figure 5.25 shows the correlation curve produced by the computational method
detailed above for a surface with rms height and correlation length as for surface
#83. The graph shows the single and double scatter components for s-polarised and
p-polarised light observed (with the incident field s-polarised), and also tle combi-
nations of the single and double components, the total curves, for each polarization

state.

As discussed in chapter four, there is no point trying to divectly compare this 1esult
with an experimental one as the latier is spatially averaged, reducing the correlation
values. A supcrficial examination reveals that the total computational values arve,
as expected, higher than the experimental ones at any given angle. It may be
scen, however, that thie distinctive bumps present in the experimental curves are

noticeably lacking in figure 5.25.

Figure 5.26 1s a curve produced by the method when an ensemble average is taken
over only 100 surface vcalisations. As can be seen, extra corvelation peaks ave
now present at the lower angles. The reason they are not observed in figure 5.25
is because they have been averaged out. This coniputational method gives extra
correlation peaks of different heights and at different positions for each run of 100

frames. Averaging over greater numbers of fraimes washes the peaks out.

The inconsistent maaner in which the extra peaks appear may be explained by
the following points. A possible mechanisni to describe the origin of the extra

correlation peaks, given in chapter six, relies heavily on the phase change of the

light scattered between sides of a well in the surface. The main approximations
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Figure 5.25: Computational correlation curves, for a surface with narameters identi-
cal to surface#83, with the reference image at 10 degrees and showing the different
components. The incident field has a wavelength of 0.633;:n and is s-polarised.
The ensemble average was taken over 800 frames of a 2048 point surface with a side

length of GO\.

necessarily introduced into the computational method in order to get some results,
namely the large spacing between surface poiunts, will mean that this very critical
distance (around seven wavelengths for surface #83) is constrained by the spacing
and size of the surface facets. There ar= less than fi e surface facets over this critical
distance. The random additions to the coordinates of the surface points to give
a uniform phase distribution of the light scattered from all points of the surface
will not help in this localised situation -— the critical distance, over any five facets

contributing to the extra correlation peak, being randoinly adjusted.

Nevertheless, although it is not possible to compare figure 5.25 and figme 5.26

directly to the experimental results, they do show clearly which components of the
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Figure 5.26: Computational correlation curves, the variable parameters are identical
to that of figure 5.25 except that the ensemble average was taken over only 100
frames.

correlation curves are a result of the single scatter and double scatter processes.
It is clearly evident that the double scatter process is respensible for introducing
side peaks into the correlation curves. It may also be seen that the cross polarised,
double scatter component of the simulation and the total curve are the same; proving
that the cross-polarised, single scatter component (discussed above) has a negligible

effect on the overall result.

Figure 5.27 aud figure 5.28 show graphs of the correlation coefficients for, respec-
tively, s-polarised and p-polarised comnponents of the total (i.e., single plus double)
field scattered from the computational statistical equivalent of surface #83 using
the method above. All the results were taken oven a 2048 point surface with a

side length of 60 wavelengths and a wavelength of 0.633um. Each graph shows four

curves, with the reference angles set, at 10, 20, 30 and 40 degrees.
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Figure 5.27. Total (single + double) computational correlation curves tor surface
#83 for various reference images (at 10, 20, 30 and 40 degrees). The incident field
has a wavelength of 0.633m and is s-polarised. The corrclations consider only the
s-polarised scattered component. The ensemble average was taken over 600 frames
of a 2048 point surface with a side length of GOA.

It is immediately noticeable that both of these figures show rouglly the expected
shapes for the correlation curves. The curves in each diagram ave all about thic same
width irrespective of angle. The finding differs from the single scatter prediction that
the widths of the peaks should reduce as the angle of incidence increases, but is in

accordance with thie experimental results (cf. figure 5.17 and figure 5.20).

The above results, derived from the computational model, go to show that the
departure of the single scattering Beckmann theory from the expertmental results

arises soley because of its failure to cope with multiple scattering. In fact, it has

been shown that considcration of just the single and double scatter components of

the scattered field is sufficient to bring theoretical calculations into line with the
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Figure 5.28: Total (siugle + double) computational correlation curves for surface
#83 for various reference images (at 10, 20, 30 and 40 degrees). The incident field
has a wavelength of 0.6330n and is s-polarised. The correlations consider only the
p-polarised scattered component. The ensemble average was taken over 600 frames
of a 2048 point surface with a side length of 60,

experimental results (from sarface #83).

As shown in chapter four, surface #83 was expected to fall within the regime of
the Kirchhoff approximatior, but not to conform with the Beckmann solution. The
sitnilarity between experimental results and results from the computational model
facing the same constraints shows that the conceptual basis of the statistical analysis
of the surface parameters is trustworthy. An arguement is presented in the next
chapter which is based upon similar concepts and can explain the shapes of various

scattering results from doubly scattering surfaces.
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Chapter 6

Discussion and Conclusion

6.1 Single Scatter

It has been shown that for a Gaussian random rough surface with its rms surface
height and correlation length within certain ranges, such that the surlace may be
considered to be single scattering, Beckimann theory adequately explains all exper-
imental results presented once allowances for the particular experimental situation
are incorporated. As an existing, well established theory copes well with the situa-

tion, no further explanation is deemed necessary here,

If any future work is proposed in this area, it should be to quantitatively examine
the effect that spatially averaging the speckle around the observed direction has on

the correlation coefficients.
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6.2 Double Scatter

For Gaussian random rough surfaces with rms heights and correlation lengths such
that they may be considered as double scattering, but still conforming to the re-
strictions on the Kirchhoff approximation, experimental results were found to depart
from the Beckmann theory (which only considers a single scattering mcchanism) to
a greater degree as the surface . ameters fall further from the ranges that indicate
single scattering. Polarisation changes were also noticed which are not addressed by

the Beckmann approach.

As there 1s no analytical theory known to the author which can account for multiple
scattering from two dimensional surfaces, a computational model has had to provide
the theoretical comparison for the results obtained. Vast demands on computer
resources limited the extent of this comparison. However, a very simple model is
now proposed which explains some features of the experimental results, namely the
peaks in the correlation curves and their relation to the side lobe in the intensity

plots.

The first part of this analysis will concentrate on an examination of the scattered

intensity envelope.

6.2.1 Scattered Intensity Envelope Considerations

The following is based on an intuitive argument that some observable macro-effect

(e.g., a side lobe) is simply related to micro-causes (e.g., phase differences due to

a collection of individual scattering paths). This is not a new approach; various
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authors (mentioned below) have explained the double scatter effect in this way, but

only in a qualitative manner.

Consider figure 6.1, which shows one valley on a surface and one possible pair of
interfering paths ace and dcb, both of which travel along the same line between the
two points of contact with the surface. Allincident light is at an angie 0 with respect
to the mean surface normal, and only the light scattered in the specular direction is

considered. As vector quantities are used, the representation can be applied to two

dimensional surfaces.

z

A \a l-/,

Figure 6.1: A pair of the many possible interfering paths within a valley of a rough
surface.

Previous arguments along these lines! 41 have concluded by stating that the hack-
scatter peak observed when illun:inating multiply scattering surfaces is due to con-
structive interference between two equal and opposite paths, one the time reversal

of the other (a less general situation than with paths ace and deb). These paths
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are guaranteed to constructively interfere, all other paths resulting in no unet inter-
ference. This argument may be extended to include the so called ‘side lobes’ by
simply considering the first order interference fringe between more general pathstl,
Figure 6.2 shows the equivalent of the side lobes evident when observation is in the

specular direction.
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Figure 6.2: A graph showing the cross-polarised intensity scattering envelope from
surface #83. This is a duplicate of figure 5.24 in chapter five. Observation is in the
specular direction and the incident light has a wavelength of 0.633 ..

Examining the arrangement more closely, the phase difference between the paths,

¢, is easily determined:

¢ = (kiri —kary) - (kirs — ko)

= (ki +k;).(ry — 1) (6.1)

For the specular case considered,

2

k, = T;(sin()x—cosﬂz) (6.2)
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o
k;, = —/\—(si110x+c030z)

giving the phase difference
o= %r-sinw_\x (6.3)

where Az is the distance between the two scattering points along the r axis. As no
concessions to a one dimensional surface have been made, this is trae even for a two

dimensional surface — it is a consequence of the in-plane scattering geometry used.

For constru. tive interference, ¢ must be an integer number of 2w, i.e.,

4r
2nr = —sinfAx (6.4)
N
where n is an integer, or equivalently,
ni
sinf) = — 6.5)
2Ax (

The question is now posed as to what Ax is in a macro sense. By averaging equation

(6.5), over an ensemble of wells, the surface may be considered as a whole, such that

nA

21];\_,_.

sinf) =

(6.6)

where the quantity na, has simply replaced Ax, and may be considered as the mean

well width (across the direction of the incident plane).

Equation (6.6) can now qualitatively explain the features of figure 6.2. The back-
scatter peak is the zeroth order fringe n = 0, i.e., when 8 = 0; and subsequent peaks

are the higher orders, n = 1,2..., their actual position determined by Axz.

When § = 0, n = 0 regardless of the fluctuations in Ax. This is the backscat-

tering condition — all contributions are in phase. However, higher n values will
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not preclude the variance of Ax. The prominence of any fringe at these values will
depend upon the variance in the phase. The standard deviation in the phase may

be dctermined from equation (6.3),

4 | ,
Oy = 5 sin Ooax (

=>
-1
~—

The larger o4 is, the smaller the intensity of any higher order fringes. Obviously, to
determine the exact condition the general forin of the probability density function

of Az must be found. The values of ya, and aa, may also then be obtainable.

Antibackscatter™ is also allowed by this model, since it has now been established

that time reversed paths are not required for a peak in an intensity envelope.

One final feature of the intensity plots, which has not been previously addressed and
which this model can explain, is why the co-polarised and cross-polarised compo-
nents of the detected light show peaks at different angles. This is evident in figure
5.23 in chapter five, and also for the side lobes in other scattered intensity results

froma two dimensional surfaces!"H1,

Figure 6.3 shows intensity results similar to those shown in chapter five, hut was
obtained by summing up all of the pixels in a speckle image taken with a Palnix
CCD cameral*®, This camera was used before the lower noise Princeton lustruments
camera was available. The general shape of these curves should be ignored — they
result from an automatic gain which the camera possessed — but the angles at
which the peaks appear may be relied upon. The images which make up the cross
polarised result include some of those which went to make up the surface plot in

chapter five, figure 5.22.

Figure 6.3 is considered now as it 1s known to resnlts from an area of surface #33

@QOGOQQ.@QOOOOQO.COOO._O.CQQQOO._Q
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from which correlation results have been obtained and it clearly shows the positions
of the peaks. It should be stressed that the following will still apply to figure 5.23

in chapter five.

|
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=)
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Figure 6.3: Intensity plots {or s-polarised aud p-polarised light detected from suy-
face #83, showing the angles of the peaks observed for observation in the specular
direction when s-polarised light is incident with wavelength 0.6330n. Data points
were taken every half degree.

It is now necessary to censider what is happening from a two dimensional poaint of
view and introduce the concept of a mean well (i.e., the average dip in the surface).
Consider oue such well, which, upon double scatiering. may give rise to both a
co-polarised and cross-polarised compouent, as shown in figure 6.1. It is clearly
evident in the diagram, that ihe mean well width from the point of view of the
cross-polarised somponent is shorter than that for the co-polarised compernent, i.e.,

for s-polarized light incident,

14 I 1 N
Nazr <~ laz ( ‘-

~
-

g

—

where the superscripts represent the polarisation state of the observed scattered
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Figure 6.4: Schematic diagram showing Low a well in a suriace doubly scatters
polarised light to give both a co-polarised and cross-polarised cor ponent.
Considering equation (6.6). it may be scen that for a particuwer n (greater than
i . o
zero),
0, > 0, (6.9)
i.e., as observed, the angle at which a peak of a particular order appears, *s lavger

for the cross-p:olarised compouent than for the co-polarised one.

Continuing with the miodel of a circular (the average shape) mean well, a wore
definite velationship between yi, wad 73, may be established, purely due to the

circular geometyy. From figure .4,
Nar = 1z 054D (6.10)

Uhis leadr to a relation hetween the angles at which the peaks occur; for a particular

1,

sin &, = VI sin 0, (6.11)
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Taking the angle at which the s-polarised side lobe appears in tigure 6.3, 0, =
6.5 £ 0.25 degrees, and applying equation (6.11), the angle the p-polarised side lobe
should be evident is, 0, = 9.2 £ 0.4 degrees. This compares well with the angle
measured from figure 6.3 of 9.25 £ 0.25, giving a great deal of weight to equation

(6.11) and the simple mean well model.

6.2.2 Correlation Considerations

Following an argument simtlar to that given at the beginning of the previous section,
a high degree of correlation may be said to exist when, on average, the difference in
the phase differences between any two pairs of interfering paths is close to zero. Note
that this is regardless of what those phase differences ave. This is buiit on the basis
that a high degree of correlation occurs when speckles appear in the same place,
i, cespect to other speckles, that they do at another angle. The presumption is
then made that iodividual wells in the surface must be making the same (or similar)

contributions to the scattered field at both angles.

Although it may scem unlikely that the multiple contributions, from: the various
wells, should all naintain the same phase relationships with respect to each other,
without kceping the same phase, there is no reason for impusing such a restriction

and therefore the absolute phace change will be left undefined.

Starting with the phase difference between a pair of paths oun the surface, equation
(6.3), the difference between that intrcduced by one pair and that introdusced by

another may be obtained. In varticutar, the difference introduced by one angle of

incidence compared to another may be determiued.
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v
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&
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Figure 6.5: A pair of the many possible inteifering paths within a valley of a rough
surface shown at different angles of incidence.

Cornparing figure 6.1 with figure 6.5, it may be seen that the latter consists of twe
of the interfering path pairs of the fornier, incident at different angles. For now, the
path the light takes between scattering points on the surface is assumed the same

for all angles for the purposes of comparison.

The phase differences within each pair are

4.

i o1 = T}rsinO;AJ; (6.12)
4

P2 = %sindzAr (6.13)

where the subscripts 1 and 2 denote the two different pairs.

The difference in the phases between one angle of incidence and the other will
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therefore be

4
Ap =y — ¢ = T”(sin 0, — sin 0,) Az (6.14)

In equation (6.14) Az may by replaced, {ollowing the same arguineat as made pre-

viously, by 7ar — a surface wide parameter.

As stated above, a high correlation will he expected when the difference in the two
phases is zero or an integer multinle of 27, Introducing this into equation (6.14)
gives
. o T
sind, = sinf; + A (6.15)
Ay

When n = 0, 0, = ¢;, a correlation between twe of the same thing — obvicusly 1

-— the maiu correlation peak in the experimental results in chapter five.

However, higher order interactions may still give a degree of correlation, albeit at-
tenuated by the fluctuations in Az, explaining the extra peaks observed in the

correlation of speckle patterns tiom doubly scatiering surfaces.

Unfortunately, experimental work conducted did not produce morc than one extra
correlation peal (the first order one), but the compntational results, shown i figure
5.26 in chapter five, clearly show two extra peaks to the side of the main n = 0

peak. This evidence affords some confidence in the above argument,

6.2.3 Further Analysic of the Simple Mouel

The model, as it stands, is not nerfect; for instance, ii fails to predict the relative

placement of any lugher oider intensity peaks and is likely to fail in the corrclation
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case as well. Given that the first order peak is at 8, the second order peak should

be cxpected, frony equation (6.6), at
sinf, = 2sin 0, (6.16)

In figure 6.3, with the first order peak ai 6.5 £ 0.2 degrees for the co-polarised
situation, the second order peak should be expected at 13.1 £ 0.5 degrees. There is

clearly a dip around this region in the graph.

It is, however, possible to explain this failure. One of the main assumptions the
model was based upou was that the mean well width is fixed, anid that the interfering
light traveled along equal but opposite paths between the two scatiering points of

surface.

It is now proposed that if light is incident on a well at a large angle, it will travel
a different distance between points than that incident at a small angle. This can
be seen in figure 6.6. Tracing the concept through, it is realised that if a larger
angle of incidence decreases the width between scattering points, then the angle the
peak appears at will correspondingly increase. Releasing the restriction of fixing 14,
explains why a second order peak is observed at around 15.5 degrees, in figure 6.3,

instead of the predicted position of around 13 degrees.

The possible scattering paths that might exist higher up the well, traversing across
larger distances, may be discounted by realising that, in a large proportion of these
cases, the other side of the well is not likely to rise high enough to catch the light

for the second scatter.

Note that now 54, should be written either, 5a-(n), as a function of 7, or more

properly, 7az(0), as a function of the angle of incidence. Some idea of the form of

@Q@QQOO0OOIDOOOOOO_’OQQO,QQO'OQ,_.O
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Figure 6.6: Diagram showing how an increase in the angle of incidence leads to a
decrease in the distance traversed across the well.

this function may be gained by considering the gradients of the sides of a mean well.

It is first necessary to make au assumption that in double scattering. for scattering
in the specular direction, the paths between scattering points are horizontal (by
which it is meant that they are parallel to the mean surface plane). This may be
justified by realising that if a mean well is being considered, this will be symmetrical
ard the light will therefore travel along a horizontal path. As discussed in chapter

four, and shown in figure 4.3, this will lead to a gradient at the surface of

_ T 6 -
m = tan 373 (6.17)

where 8 is constrained to be positive, and m is negative if 0 is the angle of incidence,
and positive il ¢ is the angle of observation (for incident light from the left in the

above diagrams). The change in the gradient between the two scatiering points is
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therefore 2m, the difference between —m and m.

In chapter two, an expression was obtained for the rate of change of the gradient
with respect to the distance across a Gaussian surface, namely its rins curvature,

equation (2.33).

As the portion of the surface considered here is at the bottom of a well, i.e., in the
region of a high point in the curvature, the approximation to the rms curvature may
be on the low side. To allow for this a quantity p (which gives a result of less than
1) is introduced,

dm 230

e (6.13)

o and 7 are, respectively, the rms height and correlation length of the surface.
Strictly speaking, p will be a function of 0, decreasing as 0 increases — for now it

will be considered constant.

Dividing the change in the gradient by this rate of change will give an expression

for, naz(0), the distance between the two scattering points,
] g1

r? r 0
7}A1'(0) = 5’}(; tan (j)‘ - 5) (6]())

where @ is the angle of incidence. Obviously this expression will apply to the co-

polarised case — it is related to the cross-polarised case by equation (6.10).

Substituting equation (6.19) into equation (G.6), an absoliite expression for the an-

gle: . 0, at which the side lobes appear may be obtained,

, T Y Vinde
sind tan (—2- - 5) = "—'2/)—7-5— (6.20)

which may be transformed with suitable teigonometric identities te give (for terms

> . . - . g . 3 e . g B R . K FEREES . ., . - : . ]
e et e .. A Lo K- AR . LI S L . . . L. ‘_‘ oL e . .. . . . . . . : S .
e AR e e e - L R P Lo R A R . .. h .- .. . .



6.2. DOUBLE SCATTER

up to order tan?(0/2)),

92— )= /(2 =) — 4C :
f,an("\ (-0 =20 -4+

where
niv3o 5
(=57 (6.22)
2pT
Applying this to surface #83, p may be determined by looking at the n =1 peak in
figure 6.3 where 0 = 6.5 £ 0.25. It is found that p = 0.66 £ 0.1 (the large error is

due to the inclusion of the uncertainty in the measured surface parameters, o and

7).

For n = 2, equation (6.20) predicts 0 = 15 £ 5 degrees (which will be slightly on
the low side due to the assumption that p is fixed). It may be secen that the second

peak in figure 6.3 is near the centre of this range at 15.5 £ 0.25 degrees.,

Incidentally. the mean well widths which give rise to these intensity peaks are ap-
proximately 4.30n for n = 1 and 3.6pm for n = 2. That is just under 7 and 6

wavelengths respectively.

The calculated value of p for figure 6.2 1s 0.94 £ 0.20. The difference between this
value and that found from figure 6.3 can be atiributed to the different arcas of the
surface used in each case, which linplies that the surface statistics are not uniform

over the whole surface on such a small scale (and was found to be the caset).

The relaxation of the constraint on 7,4, also carries through to the correlation model.
The assumnption made at the start of this study, that the two scattering paths

traverse the same line between identical scattering points, {refer back to figure 6.5
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to see this), is no longer consistent with the understanding of the processes at this

stage.

As previously mentioned, for a high degree of correlation, all that is required is for

any two paths to give rise to the same phase change. It is not necessary for these

paths to travel the same route.

Rewriting equation (6.14) to veflect this, one obtains

Ao=0,—o; = ;—G(sin(/gﬁ.rz —sinfd;Ary) (6G.23)

where Az is not fixed, but depends upon the angle of incideuce. The subscripts 1

and 2 denote the two different correlated arrangements.

Shifting again into using the mean width (whicl is now a function of angle) and

coufining the two phases to be integer numbers of 2x apart,

)
sin0yna, () = 7—1} + sinty s, () (G 21)

Substituting equation (G.19) (modified for the cross-polarised case) into this gives

. 0. 6nio . 0
sind, tan (I - _3) = VG - 4+ il tan (1:- - —;l) (6.

22 2p12

DN
(8]
<t
-~

r

which may be solved for ¢, using equation (6.21), where

 Vone . T 0 _
= —:2-[:’-_—2— + sind, tan (—2 - ?] (6.26)

Unfortunately, as discussed above. there is no reasou to expect the phase differences
in the correlation peaks o be related to the utensity envelope peaks. In fact, the

paths which combine to give a high degree of correlation (i.e., speckles in similar

1
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<
-1

positions) are uulikely to be the same paths which produce the high points in the
intensity envelopes. However, the differences introduced into the pathis by illsmi-

nating at different angles are adequately covered by equation (6.25) if p is set to

allow for the curvatures involved.

5

Examining figure 5.20, it may be seen that for the reference, ¢y, at 2 degrees, a peak
in the correlation curve appears when ¢ = 8.5 4 0.25 degrees. This gives a value
for p in the correlation arvangement of 1.0 £ 0.3 (including all errors due to the

uncertainty in measurement of the surface parameters). It has been assumed that

the observed peak 1s the first order interference one, ve, for n = 1.

With the reference at 0, = 10 degrees, there is an observed peak at n = —1. Its
predicted position, at #, = 3 £ 1.5 degrees, compares favourably with the measured
angle of 2.5 £0.25 degrees. However, note thiat the angular differences hetween the
two peaks aud their reference angles are too similar to pose a strenuous test for the
theory. The fluctuations in Ax, coupled with the spatial averaging necessarily in-
volved with the experinicntal technigiie used, prevent any lngher order peaks, which
could mote rigorously test the predictions, from heing observed in the correlation

experinients.

It may be realised that the larger value of p for this situation, means that the
curvature, averaged around the area of a well which contributes to a high degree
of correlation, 1s less than that in the intensity case; 1.e., the scattering processes
which contribute to the ¢ .L.a correlation in surface #83 occur at higher positions

in the well than do those which contribute to a side lobe in the inteusity envelope.

As mentioned above, p was assumed to be constant. The assumption will have a
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much larger effect on the corvelation results, than it did in the intensity situation,
as the curvature is iikely to be varying more rapidly in the region of the surface
contributing in the former case. This statement is based on the previous finding,
that the portion of the swrface contributing to the peaks, is further away from the
bottom of a well for the correlation case as compared to the intensity case. As this
15 not allowed for, the predictions of the positions of auy correlation peaks should

not be expected to match exactly with the observed positions.

Further evidence of the change in p with the angie of incidence is seen in the corre-
lation coefficients for scattering from surface #2349, Consideriug figure .29, values
for p are found to be about 0.6 around the 10 degree point, increasing to about 2.0
by the 30 degree mark., These movements may be explained if at higher angles of
mcidence, the arcas of a particular well contributing to extra correlation peaks are
higher up the sides of that well; 1.e., the average curvature bhetween the two points
is reduced. The movement of the contributing paths to higher positions in the well
also explains why the extra correlation peaks ave lower at the higher angles - the

fluctuations in Az will be greater at lighor angles.

6.3 Concluding Remarks

The first three chapters of this thesis were concerned with building up the back-
ground and the concept of nwuliiple scattering and correlation coefficients. An intro-
duction was given into the statistical notions and electromagnetic theories used later

in the work; and the methods and controls required to produce results presented in

the following chapters were detailed.
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Perhaps thc only real surprise contained within these three chapters was at the end
of chapter two, where a statistical study gave an analytical tool for determining
whether a Gaussian random rough surface falls within the regime of the Nirch-
hoff apnroximation. A distinction was made between the validity of the Kirchhoff
approximation, as applicable to a point on the surface, and the single scattering
Beckmann theory. The three surfaces used througliout the work were all seen to fall

within the bounds of the Kirchhoff approximation (at least at normal incidence).

The fourth chapter saw the start of more original work; it examined tie angular
correlation of speckle patterns produced by low slope surfaces. A study similar to
that used to determine which surfaces fall within the Kirchhoff approximation was
employed, to give some idea of whether a surface should be expected, based on its
measured paramcters ¢ and 7, purely to be a single scattering one or not. It is shown
that of the three surfaces under examination, one was purely single scattering, one

double scattering. and the third lay on the border between the two regions.

An analytical expression was derived, following the work of Beckinann!" and Léger
and Perrin®Y, for the mtensity correlation cocflicients expected in a general two
dimensional scenario. It was then tailored to suit in plane scattering and some of its
possibilities were explored, these departed from the results one might have expected
intuitively. The more general expressiou was averaged around the direction of ob-
servation, to represent more accurately the relatively wide view considered in the
experimental case. Experimental results from a single scattering surface were found
to be in good agrecment, and reexaminiug the possibilities explored earlier with

this new averaged technique gave results in line with the intuitive understanding.

Finally, results were presented for a surface which departs slightly from the single
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scattering regime.

In chapter five, the double scatter Kirchhoft theory was derived for two dimen-
sional scattering. It had to be solved computationally and most of this chapter was
concerned with explaining the methods used to make it possible. Polarisation was
incorporated into the calculations, and surface self shadowing was allowed for. A
technique capable of calculating which points were visible from another, over the
whole surface in just one pass, was presented. Experimental results and the results

from the computational model were shown,

In the previous sections of this final chapter, an accepted model used to explain
iutensity and correlation results, which succeeded in predicting the occurrence of
certain features, was shown to be insuflicient at a less superficial level, The model
was advanced and shown to adequately explain and predict various features evident
i intensity and correlation situations, when observing in the specular direction,

more accurately.

It was shown that the positioning of the wells within the surface does not matter

[w] 3

only their widths have any effect upon the angular positioning of multiple scattering

features. Also, it was sugeested that it was a region near the bottom of a well which
58 &

gave rise to the intensity envelope side lobes, and that less restriction is placed upon

the region giving rise to the extra correlations.

This may be explained by considering that for an overall intensity gain, i.e., a
side lobe, a vast majority of the wells on a surface must be introducing similar

phase changes (so that their contributions to the scattered field will constructively

combine). It seeins reasonable to expect that any similarities in the various wells on
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the surface, will be towards their bottoms — every well has a bottom, but how far

up its sides go is less definite.

For a high degree of correlation, it is only required that a single well should give the
same phase contribution to the scattered field at one angle as it did at the other
angle being considered. It should be expected that this will cecur surface wide (on
an average basis) at particular angles ouly, but not necessarily at those angles which

give rise to intensity side lobes.

‘The main successes of this model were the relationships formed between peaks of
different orders in both the intensity envelope aud correlation curves, and hetween
the co- and cross-polarised peaks (of a particular order) observed in the intensity

results.,

No attempt was made to reformulate the equations derived, such that they may be
applied in a more grueral situation than in the specular divection. However, the
basic principles are not affected by the geometry; it should bhe a relatively simple

matter to extend the model beyvond the presented specular scenario.

As a final point, it would be desirable to have the model rebuilt on a more 1igorous
basis, using, say, the momeuts of Az or even finding a function for it. It should then

be possible to exactiy predict the angular position of every feature in the correlation

and intensity plots, and maybe even gain some idea of their relative contrasts.
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